Proof: Third Angle Theorem

Let's prove the following theorem:

if m∠ABC = m∠XYZ and m∠BCA = m∠YZX, then m∠CAB = m∠ZXY

A B C X Y Z

Proof:

View as a tree | View dependent proofs | Try proving it

Given
1 m∠ABC = m∠XYZ
2 m∠BCA = m∠YZX
Proof Table
# Claim Reason
1 ((m∠ABC) + (m∠BCA)) + (m∠CAB) = 180 ((m∠ABC) + (m∠BCA)) + (m∠CAB) = 180
2 (m∠ABC) + (m∠BCA) = (m∠XYZ) + (m∠YZX) if m∠ABC = m∠XYZ and m∠BCA = m∠YZX, then (m∠ABC) + (m∠BCA) = (m∠XYZ) + (m∠YZX)
3 ((m∠XYZ) + (m∠YZX)) + (m∠CAB) = 180 if ((m∠ABC) + (m∠BCA)) + (m∠CAB) = 180 and (m∠ABC) + (m∠BCA) = (m∠XYZ) + (m∠YZX), then ((m∠XYZ) + (m∠YZX)) + (m∠CAB) = 180
4 m∠CAB = 180 + (((m∠XYZ) + (m∠YZX)) ⋅ (-1)) if ((m∠XYZ) + (m∠YZX)) + (m∠CAB) = 180, then m∠CAB = 180 + (((m∠XYZ) + (m∠YZX)) ⋅ (-1))
5 ((m∠XYZ) + (m∠YZX)) + (m∠ZXY) = 180 ((m∠XYZ) + (m∠YZX)) + (m∠ZXY) = 180
6 m∠ZXY = 180 + (((m∠XYZ) + (m∠YZX)) ⋅ (-1)) if ((m∠XYZ) + (m∠YZX)) + (m∠ZXY) = 180, then m∠ZXY = 180 + (((m∠XYZ) + (m∠YZX)) ⋅ (-1))
7 m∠CAB = m∠ZXY if m∠CAB = 180 + (((m∠XYZ) + (m∠YZX)) ⋅ (-1)) and m∠ZXY = 180 + (((m∠XYZ) + (m∠YZX)) ⋅ (-1)), then m∠CAB = m∠ZXY

Comments

Please log in to add comments