Proof: Quadrilateral Parallel
Let's prove the following theorem:
if distance XY = distance ZW and XY || WZ, then XW || YZ
Proof:
Proof Table
# | Claim | Reason |
---|---|---|
1 | m∠XYW = m∠ZWY | if XY || WZ, then m∠XYW = m∠ZWY |
2 | distance YW = distance WY | distance YW = distance WY |
3 | △XYW ≅ △ZWY | if distance XY = distance ZW and m∠XYW = m∠ZWY and distance YW = distance WY, then △XYW ≅ △ZWY |
4 | m∠YWX = m∠WYZ | if △XYW ≅ △ZWY, then m∠YWX = m∠WYZ |
5 | m∠XWY = m∠WYZ | if m∠YWX = m∠WYZ, then m∠XWY = m∠WYZ |
6 | XW || YZ | if m∠XWY = m∠WYZ, then XW || YZ |
Comments
Please log in to add comments