Proof: If Parallelogram Inner Congruent

Let's prove the following theorem:

if WXYZ is a parallelogram and m∠WPY = 180 and m∠XPZ = 180, then △PYZ ≅ △PWX

Z W X Y P

Proof:

View as a tree | View dependent proofs | Try proving it

Given
1 WXYZ is a parallelogram
2 m∠WPY = 180
3 m∠XPZ = 180
Proof Table
# Claim Reason
1 WX || ZY if WXYZ is a parallelogram, then WX || ZY
2 m∠WXZ = m∠XZY if WX || ZY, then m∠WXZ = m∠XZY
3 m∠WXZ = m∠YZX if m∠WXZ = m∠XZY, then m∠WXZ = m∠YZX
4 m∠YZX = m∠YZP if m∠XPZ = 180, then m∠YZX = m∠YZP
5 m∠WXZ = m∠WXP if m∠XPZ = 180, then m∠WXZ = m∠WXP
6 m∠YZP = m∠WXP if m∠WXZ = m∠YZX and m∠YZX = m∠YZP and m∠WXZ = m∠WXP, then m∠YZP = m∠WXP
7 m∠ZYW = m∠YWX if WX || ZY, then m∠ZYW = m∠YWX
8 m∠ZYW = m∠ZYP if m∠WPY = 180, then m∠ZYW = m∠ZYP
9 m∠YWX = m∠PWX if m∠WPY = 180, then m∠YWX = m∠PWX
10 m∠ZYP = m∠PWX if m∠ZYW = m∠YWX and m∠ZYW = m∠ZYP and m∠YWX = m∠PWX, then m∠ZYP = m∠PWX
11 m∠PYZ = m∠PWX if m∠ZYP = m∠PWX, then m∠PYZ = m∠PWX
12 distance WX = distance ZY if WXYZ is a parallelogram, then distance WX = distance ZY
13 distance YZ = distance WX if distance WX = distance ZY, then distance YZ = distance WX
14 PYZ ≅ △PWX if m∠PYZ = m∠PWX and distance YZ = distance WX and m∠YZP = m∠WXP, then △PYZ ≅ △PWX

Comments

Please log in to add comments