Proof: Square Example 2

Let's prove the following theorem:

if ABCD is a square, then m∠BCA = 45

A B C D

Proof:

View as a tree | View dependent proofs | Try proving it

Given
1 ABCD is a square
Proof Table
# Claim Reason
1 ABCD is a rhombus if ABCD is a square, then ABCD is a rhombus
2 m∠BCA = m∠DCA if ABCD is a rhombus, then m∠BCA = m∠DCA
3 m∠BCA = m∠ACD if m∠BCA = m∠DCA, then m∠BCA = m∠ACD
4 ABCD is a rectangle if ABCD is a square, then ABCD is a rectangle
5 BCD is a right angle if ABCD is a rectangle, then ∠BCD is a right angle
6 m∠BCD = 90 if ∠BCD is a right angle, then m∠BCD = 90
7 quadrilateral ABCD is convex if ABCD is a rectangle, then quadrilateral ABCD is convex
8 point A lies in interior of ∠BCD if quadrilateral ABCD is convex, then point A lies in interior of ∠BCD
9 (m∠BCA) + (m∠ACD) = m∠BCD if point A lies in interior of ∠BCD, then (m∠BCA) + (m∠ACD) = m∠BCD
10 (m∠BCA) + (m∠BCA) = m∠BCD if (m∠BCA) + (m∠ACD) = m∠BCD and m∠BCA = m∠ACD, then (m∠BCA) + (m∠BCA) = m∠BCD
11 (m∠BCA) + (m∠BCA) = 90 if (m∠BCA) + (m∠BCA) = m∠BCD and m∠BCD = 90, then (m∠BCA) + (m∠BCA) = 90
12 m∠BCA = 45 if (m∠BCA) + (m∠BCA) = 90, then m∠BCA = 45

Comments

Please log in to add comments