Proof: Square Example 2
Let's prove the following theorem:
if ABCD is a square, then m∠BCA = 45
    
    
Proof:
  
      
      Given
      
    
    
      
  
  
| 1 | ABCD is a square | 
|---|
| # | Claim | Reason | 
|---|---|---|
| 1 | ABCD is a rhombus | if ABCD is a square, then ABCD is a rhombus | 
| 2 | m∠BCA = m∠DCA | if ABCD is a rhombus, then m∠BCA = m∠DCA | 
| 3 | m∠BCA = m∠ACD | if m∠BCA = m∠DCA, then m∠BCA = m∠ACD | 
| 4 | ABCD is a rectangle | if ABCD is a square, then ABCD is a rectangle | 
| 5 | ∠BCD is a right angle | if ABCD is a rectangle, then ∠BCD is a right angle | 
| 6 | m∠BCD = 90 | if ∠BCD is a right angle, then m∠BCD = 90 | 
| 7 | quadrilateral ABCD is convex | if ABCD is a rectangle, then quadrilateral ABCD is convex | 
| 8 | point A lies in interior of ∠BCD | if quadrilateral ABCD is convex, then point A lies in interior of ∠BCD | 
| 9 | (m∠BCA) + (m∠ACD) = m∠BCD | if point A lies in interior of ∠BCD, then (m∠BCA) + (m∠ACD) = m∠BCD | 
| 10 | (m∠BCA) + (m∠BCA) = m∠BCD | if (m∠BCA) + (m∠ACD) = m∠BCD and m∠BCA = m∠ACD, then (m∠BCA) + (m∠BCA) = m∠BCD | 
| 11 | (m∠BCA) + (m∠BCA) = 90 | if (m∠BCA) + (m∠BCA) = m∠BCD and m∠BCD = 90, then (m∠BCA) + (m∠BCA) = 90 | 
| 12 | m∠BCA = 45 | if (m∠BCA) + (m∠BCA) = 90, then m∠BCA = 45 | 
Comments
Please log in to add comments