Proof: If Sas Then Similar Triangles
Let's prove the following theorem:
if m∠ABC = m∠XYZ and (distance AB) / (distance XY) = (distance BC) / (distance YZ), then △ABC ∼ △XYZ
Proof:
Given
Assumptions
1 | m∠ABC = m∠XYZ |
---|---|
2 | (distance AB) / (distance XY) = (distance BC) / (distance YZ) |
3 | distance BC = distance YS |
---|---|
4 | ST || ZX |
5 | m∠ZSY = 180 |
6 | m∠XTY = 180 |
# | Claim | Reason |
---|---|---|
1 | m∠ZXY = m∠STY | if ST || ZX and m∠XTY = 180, then m∠ZXY = m∠STY |
2 | m∠XZY = m∠TSY | if ST || ZX and m∠ZSY = 180, then m∠XZY = m∠TSY |
3 | m∠YZX = m∠YST | if m∠XZY = m∠TSY, then m∠YZX = m∠YST |
4 | △ZXY ∼ △STY | if m∠YZX = m∠YST and m∠ZXY = m∠STY, then △ZXY ∼ △STY |
5 | △XYZ ∼ △TYS | if △ZXY ∼ △STY, then △XYZ ∼ △TYS |
6 | △TYS ∼ △XYZ | if △XYZ ∼ △TYS, then △TYS ∼ △XYZ |
7 | (distance YS) / (distance YZ) = (distance TY) / (distance XY) | if △ZXY ∼ △STY, then (distance YS) / (distance YZ) = (distance TY) / (distance XY) |
8 | (distance AB) / (distance XY) = (distance YS) / (distance YZ) | if (distance AB) / (distance XY) = (distance BC) / (distance YZ) and distance BC = distance YS, then (distance AB) / (distance XY) = (distance YS) / (distance YZ) |
9 | (distance AB) / (distance XY) = (distance TY) / (distance XY) | if (distance AB) / (distance XY) = (distance YS) / (distance YZ) and (distance YS) / (distance YZ) = (distance TY) / (distance XY), then (distance AB) / (distance XY) = (distance TY) / (distance XY) |
10 | distance TY = distance AB | if (distance AB) / (distance XY) = (distance TY) / (distance XY), then distance TY = distance AB |
11 | distance AB = distance TY | if distance TY = distance AB, then distance AB = distance TY |
12 | m∠XYZ = m∠TYS | if △XYZ ∼ △TYS, then m∠XYZ = m∠TYS |
13 | m∠ABC = m∠TYS | if m∠ABC = m∠XYZ and m∠XYZ = m∠TYS, then m∠ABC = m∠TYS |
14 | △ABC ≅ △TYS | if distance AB = distance TY and m∠ABC = m∠TYS and distance BC = distance YS, then △ABC ≅ △TYS |
15 | △ABC ∼ △TYS | if △ABC ≅ △TYS, then △ABC ∼ △TYS |
16 | △ABC ∼ △XYZ | if △ABC ∼ △TYS and △TYS ∼ △XYZ, then △ABC ∼ △XYZ |
Comments
Please log in to add comments