Proof: Similar Triangles Example 3

Let's prove the following theorem:

if ∠ZXY is a right angle and ∠XPY is a right angle and m∠YPZ = 180, then △PXZ ∼ △XYZ

X Y Z P

Proof:

View as a tree | View dependent proofs | Try proving it

Given
1 ZXY is a right angle
2 XPY is a right angle
3 m∠YPZ = 180
Proof Table
# Claim Reason
1 YPX and ∠XPZ are supplementary if m∠YPZ = 180, then ∠YPX and ∠XPZ are supplementary
2 (m∠YPX) + (m∠XPZ) = 180 if ∠YPX and ∠XPZ are supplementary, then (m∠YPX) + (m∠XPZ) = 180
3 m∠YPX = 90 if ∠XPY is a right angle, then m∠YPX = 90
4 90 + (m∠XPZ) = 180 if (m∠YPX) + (m∠XPZ) = 180 and m∠YPX = 90, then 90 + (m∠XPZ) = 180
5 m∠XPZ = 90 if 90 + (m∠XPZ) = 180, then m∠XPZ = 90
6 m∠ZPX = 90 if m∠XPZ = 90, then m∠ZPX = 90
7 ZPX is a right angle if m∠ZPX = 90, then ∠ZPX is a right angle
8 m∠ZXY = m∠ZPX if ∠ZXY is a right angle and ∠ZPX is a right angle, then m∠ZXY = m∠ZPX
9 m∠YZX = m∠PZX if m∠YPZ = 180, then m∠YZX = m∠PZX
10 m∠YZX = m∠XZP if m∠YZX = m∠PZX, then m∠YZX = m∠XZP
11 ZXY ∼ △ZPX if m∠YZX = m∠XZP and m∠ZXY = m∠ZPX, then △ZXY ∼ △ZPX
12 XYZ ∼ △PXZ if △ZXY ∼ △ZPX, then △XYZ ∼ △PXZ
13 PXZ ∼ △XYZ if △XYZ ∼ △PXZ, then △PXZ ∼ △XYZ

Comments

Please log in to add comments