Proof: Converseofpowersubstitution
Let's prove the following theorem:
if bm = bn, then m = n
    
    
    
    Proof:
  
      
      Given
      
    
    
      
  
  
| 1 | bm = bn | 
|---|
| # | Claim | Reason | 
|---|---|---|
| 1 | logb(bm) = m | logb(bm) = m | 
| 2 | logb(bn) = n | logb(bn) = n | 
| 3 | logb(bm) = logb(bn) | if bm = bn, then logb(bm) = logb(bn) | 
| 4 | m = n | if logb(bn) = n and logb(bm) = m and logb(bm) = logb(bn), then m = n | 
Comments
Please log in to add comments