Proof: Divide Zero 2
Let's prove the following theorem:
if b > 0, then (c - c) / ((b + a) - a) = 0
Proof:
Given
1 | b > 0 |
---|
# | Claim | Reason |
---|---|---|
1 | not (b = 0) | if b > 0, then not (b = 0) |
2 | c - c = 0 | c - c = 0 |
3 | (c - c) / b = 0 / b | if c - c = 0, then (c - c) / b = 0 / b |
4 | 0 / b = 0 | if not (b = 0), then 0 / b = 0 |
5 | (c - c) / b = 0 | if (c - c) / b = 0 / b and 0 / b = 0, then (c - c) / b = 0 |
6 | (b + a) - a = b | (b + a) - a = b |
7 | (c - c) / ((b + a) - a) = (c - c) / b | if (b + a) - a = b, then (c - c) / ((b + a) - a) = (c - c) / b |
8 | (c - c) / ((b + a) - a) = 0 | if (c - c) / ((b + a) - a) = (c - c) / b and (c - c) / b = 0, then (c - c) / ((b + a) - a) = 0 |
Comments
Please log in to add comments