Proof: Equation a

Let's prove the following theorem:

((a + c) + d) + b = ((b + c) + a) + d

Proof:

View as a tree | View dependent proofs | Try proving it

Proof Table
# Claim Reason
1 (a + c) + d = (c + a) + d (a + c) + d = (c + a) + d
2 ((a + c) + d) + b = ((c + a) + d) + b if (a + c) + d = (c + a) + d, then ((a + c) + d) + b = ((c + a) + d) + b
3 ((c + a) + d) + b = (c + a) + (d + b) ((c + a) + d) + b = (c + a) + (d + b)
4 d + b = b + d d + b = b + d
5 (c + a) + (d + b) = (c + a) + (b + d) if d + b = b + d, then (c + a) + (d + b) = (c + a) + (b + d)
6 (c + a) + (b + d) = ((c + a) + b) + d (c + a) + (b + d) = ((c + a) + b) + d
7 (c + a) + b = (b + c) + a (c + a) + b = (b + c) + a
8 ((c + a) + b) + d = ((b + c) + a) + d if (c + a) + b = (b + c) + a, then ((c + a) + b) + d = ((b + c) + a) + d
9 ((a + c) + d) + b = ((b + c) + a) + d if ((a + c) + d) + b = ((c + a) + d) + b and ((c + a) + d) + b = (c + a) + (d + b) and (c + a) + (d + b) = (c + a) + (b + d) and (c + a) + (b + d) = ((c + a) + b) + d and ((c + a) + b) + d = ((b + c) + a) + d, then ((a + c) + d) + b = ((b + c) + a) + d
Previous Lesson

Comments

Please log in to add comments