Proof: Rearrange Sum Equal 3
Let's prove the following theorem:
(a + b) + c = (c + a) + b
Proof:
# | Claim | Reason |
---|---|---|
1 | (a + b) + c = c + (a + b) | (a + b) + c = c + (a + b) |
2 | c + (a + b) = (c + a) + b | c + (a + b) = (c + a) + b |
3 | (a + b) + c = (c + a) + b | if (a + b) + c = c + (a + b) and c + (a + b) = (c + a) + b, then (a + b) + c = (c + a) + b |
Comments
Please log in to add comments