Proof: Add a Number to Both Sides

Let's prove the following theorem:

if a + 90 = 180, then a = 90

First we use the Additive Property of Equality to claim that:

a + 90 + -90 = 180 + -90

Then we show that:

  1. left side reduces to a.
  2. right side reduces to 90.

Proof:

View as a tree | View dependent proofs | Try proving it

Given
1 a + 90 = 180
Proof Table
# Claim Reason
1 (a + 90) + (-90) = 180 + (-90) if a + 90 = 180, then (a + 90) + (-90) = 180 + (-90)
2 90 + (-90) = 0 90 + (-90) = 0
3 (a + 90) + (-90) = a + (90 + (-90)) (a + 90) + (-90) = a + (90 + (-90))
4 a + (90 + (-90)) = a + 0 if 90 + (-90) = 0, then a + (90 + (-90)) = a + 0
5 a + 0 = a a + 0 = a
6 a + (90 + (-90)) = a if a + (90 + (-90)) = a + 0 and a + 0 = a, then a + (90 + (-90)) = a
7 (a + 90) + (-90) = a if (a + 90) + (-90) = a + (90 + (-90)) and a + (90 + (-90)) = a, then (a + 90) + (-90) = a
8 180 + (-90) = 90 180 + (-90) = 90
9 a = 90 if (a + 90) + (-90) = 180 + (-90) and (a + 90) + (-90) = a and 180 + (-90) = 90, then a = 90

Comments

Please log in to add comments