Proof: Add Associative 2
Let's prove the following theorem:
(a + b) + c = (a + c) + b
Proof:
| # | Claim | Reason |
|---|---|---|
| 1 | (a + b) + c = a + (b + c) | (a + b) + c = a + (b + c) |
| 2 | b + c = c + b | b + c = c + b |
| 3 | a + (b + c) = a + (c + b) | if b + c = c + b, then a + (b + c) = a + (c + b) |
| 4 | (a + b) + c = a + (c + b) | if (a + b) + c = a + (b + c) and a + (b + c) = a + (c + b), then (a + b) + c = a + (c + b) |
| 5 | (a + c) + b = a + (c + b) | (a + c) + b = a + (c + b) |
| 6 | (a + b) + c = (a + c) + b | if (a + b) + c = a + (c + b) and (a + c) + b = a + (c + b), then (a + b) + c = (a + c) + b |
Comments
Please log in to add comments