Proof: Subtract 1
Let's prove the following theorem:
(b + a) - a = b
Proof:
# | Claim | Reason |
---|---|---|
1 | (b + a) - a = b + (a - a) | (b + a) - a = b + (a - a) |
2 | a - a = 0 | a - a = 0 |
3 | b + (a - a) = b + 0 | if a - a = 0, then b + (a - a) = b + 0 |
4 | b + 0 = b | b + 0 = b |
5 | b + (a - a) = b | if b + (a - a) = b + 0 and b + 0 = b, then b + (a - a) = b |
6 | (b + a) - a = b | if (b + a) - a = b + (a - a) and b + (a - a) = b, then (b + a) - a = b |
Comments
Please log in to add comments