Proof: Reverse Example
Let's prove the following theorem:
reverse of remaining stack [ [ 0, [  ] ], [ [ 1, [  ] ], [  ] ] ] and already reversed stack [  ] = [ [ 1, [  ] ], [ [ 0, [  ] ], [  ] ] ]
    
    
    
    Proof:
| # | Claim | Reason | 
|---|---|---|
| 1 | reverse of remaining stack [ [ 0, [ ] ], [ [ 1, [ ] ], [ ] ] ] and already reversed stack [ ] = reverse of remaining stack [ [ 1, [ ] ], [ ] ] and already reversed stack [ [ 0, [ ] ], [ ] ] | reverse of remaining stack [ [ 0, [ ] ], [ [ 1, [ ] ], [ ] ] ] and already reversed stack [ ] = reverse of remaining stack [ [ 1, [ ] ], [ ] ] and already reversed stack [ [ 0, [ ] ], [ ] ] | 
| 2 | reverse of remaining stack [ [ 1, [ ] ], [ ] ] and already reversed stack [ [ 0, [ ] ], [ ] ] = [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] | reverse of remaining stack [ [ 1, [ ] ], [ ] ] and already reversed stack [ [ 0, [ ] ], [ ] ] = [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] | 
| 3 | reverse of remaining stack [ [ 0, [ ] ], [ [ 1, [ ] ], [ ] ] ] and already reversed stack [ ] = [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] | if reverse of remaining stack [ [ 0, [ ] ], [ [ 1, [ ] ], [ ] ] ] and already reversed stack [ ] = reverse of remaining stack [ [ 1, [ ] ], [ ] ] and already reversed stack [ [ 0, [ ] ], [ ] ] and reverse of remaining stack [ [ 1, [ ] ], [ ] ] and already reversed stack [ [ 0, [ ] ], [ ] ] = [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ], then reverse of remaining stack [ [ 0, [ ] ], [ [ 1, [ ] ], [ ] ] ] and already reversed stack [ ] = [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] | 
Comments
Please log in to add comments