Function value at key in map vars
search vars for the entry with the key key and output the value
Format:
value at key in map vars
Input:
Output:
Properties that reference this function:
Conditional properties that reference this function:
if the following are true:
- Expression Stack at time t = [ [ ], [ [
obj.append(x)
, ys ], rest ] ] - Value Stack at time t = [ [ value, [ ] ], [ next_level, other_levels ] ]
- value at obj in map (Variables Map at time t) = Python reference idx
- the element at index idx of stack (Python Object Store at time t) = Python list entries
then Python Object Store at time (t + 1) = result of storing (Python list (result of appending value to entries)) at index idx of stack (Python Object Store at time t)
(link)- Expression Stack at time t = [ [ ], [ [
if the following are true:
- Expression Stack at time t = [ [ ], [ [
obj.append(x)
, ys ], rest ] ] - Value Stack at time t = [ [ value, [ ] ], [ next_level, other_levels ] ]
- value at obj in map (Variables Map at time t) = Python reference idx
- the element at index idx of stack (Python Object Store at time t) = Python list entries
then Value Stack at time (t + 1) = [ [ None, next_level ], other_levels ]
(link)- Expression Stack at time t = [ [ ], [ [
if the following are true:
- Value Stack at time t = [ [ a, [ ] ], [ next_level, other_levels ] ]
- Expression Stack at time t = [ [ ], [ [ name."pop"(args), ys ], rest ] ]
- value at name in map (Variables Map at time t) = Python reference idx
- the element at index idx of stack (Python Object Store at time t) = Python list entries
then Python Object Store at time (t + 1) = result of storing (Python list (stack after popping a value from stack entries at index a)) at index idx of stack (Python Object Store at time t)
(link)if the following are true:
- Value Stack at time t = [ [ a, [ ] ], [ next_level, other_levels ] ]
- Expression Stack at time t = [ [ ], [ [ name."pop"(args), ys ], rest ] ]
- value at name in map (Variables Map at time t) = Python reference idx
- the element at index idx of stack (Python Object Store at time t) = Python list entries
then Value Stack at time (t + 1) = [ [ the element at index a of stack entries, next_level ], other_levels ]
(link)if the following are true:
- Expression Stack at time t = [ [ ], [ [ function call with name: "__getitem__" and arguments: args, ys ], rest ] ]
- Value Stack at time t = [ [ a, [ Python reference idx, [ ] ] ], [ next_level, other_levels ] ]
- the element at index idx of stack (Python Object Store at time t) = Python dictionary entries
then Value Stack at time (t + 1) = [ [ value at a in map entries, next_level ], other_levels ]
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then the line at time (t + 1) = the line at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then the tab at time (t + 1) = j - 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then Expression Stack at time t = [ ]
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then Control Map at time (t + 1) = Control Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then Variables Map at time (t + 1) = Variables Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then Context Stack at time (t + 1) = Context Stack at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then "if" map at time (t + 1) = "if" map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then Expression Stack at time (t + 1) = Expression Stack at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then Python Object Store at time (t + 1) = Python Object Store at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then 'while stack' at time (t + 1) = 'while stack' at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then Class Map at time (t + 1) = Class Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j = a method named method_name with parameters params
- value at class_name in map (Class Map at time t) = class_map
- value at "methods" in map class_map = methods_map
then Class Map at time (t + 1) = result of storing (result of storing (result of storing [ entry "params": params, [ entry "line": i, [ ] ] ] at key: method_name in map: methods_map) at key: "methods" in map: class_map) at key: class_name in map: (Class Map at time t)
(link)if the following are true:
- Expression Stack at time t = [ [ ], [ [ obj_name.method_name(args), ys ], rest ] ]
- value at obj_name in map (Variables Map at time t) = Python reference index
- the element at index index of stack (Python Object Store at time t) = Python object: [ entry "__class_name__": class_name, e_rest ]
- method parameters where the Class Map is (Class Map at time t), class name is class_name, and method name is method_name = params
- Parameters List at time t = None
- Value Stack at time t = [ values, v_stack ]
then Parameters List at time (t + 1) = params
(link)if the following are true:
- Expression Stack at time t = [ [ ], [ [ obj_name.method_name(args), ys ], rest ] ]
- value at obj_name in map (Variables Map at time t) = Python reference index
- the element at index index of stack (Python Object Store at time t) = Python object: [ entry "__class_name__": class_name, e_rest ]
- method parameters where the Class Map is (Class Map at time t), class name is class_name, and method name is method_name = params
- Parameters List at time t = None
- Value Stack at time t = [ values, v_stack ]
then Value Stack at time (t + 1) = v_stack
(link)if the following are true:
- Expression Stack at time t = [ [ ], [ [ obj_name.method_name(args), ys ], rest ] ]
- value at obj_name in map (Variables Map at time t) = Python reference index
- the element at index index of stack (Python Object Store at time t) = Python object: [ entry "__class_name__": class_name, e_rest ]
- method parameters where the Class Map is (Class Map at time t), class name is class_name, and method name is method_name = params
- Parameters List at time t = None
- Value Stack at time t = [ values, v_stack ]
then Function Variables Map at time (t + 1) = [ ]
(link)if the following are true:
- Expression Stack at time t = [ [ ], [ [ obj_name.method_name(args), ys ], rest ] ]
- value at obj_name in map (Variables Map at time t) = Python reference index
- the element at index index of stack (Python Object Store at time t) = Python object: [ entry "__class_name__": class_name, e_rest ]
- method parameters where the Class Map is (Class Map at time t), class name is class_name, and method name is method_name = params
- Parameters List at time t = None
- Value Stack at time t = [ values, v_stack ]
then Argument Values at time (t + 1) = [ Python reference index, reverse of values ]
(link)if the following are true:
- Expression Stack at time t = [ [ ], [ [ obj_name.method_name(args), ys ], rest ] ]
- value at obj_name in map (Variables Map at time t) = Python reference index
- the element at index index of stack (Python Object Store at time t) = Python object: [ entry "__class_name__": class_name, e_rest ]
- method parameters where the Class Map is (Class Map at time t), class name is class_name, and method name is method_name = params
- Parameters List at time t = None
- Value Stack at time t = [ values, v_stack ]
then Expression Stack at time (t + 1) = Expression Stack at time t
(link)if the following are true:
- Expression Stack at time t = [ [ ], [ [ obj_name.method_name(args), ys ], rest ] ]
- value at obj_name in map (Variables Map at time t) = Python reference index
- the element at index index of stack (Python Object Store at time t) = Python object: [ entry "__class_name__": class_name, e_rest ]
- method parameters where the Class Map is (Class Map at time t), class name is class_name, and method name is method_name = params
- Parameters List at time t = None
- Value Stack at time t = [ values, v_stack ]
then Variables Map at time (t + 1) = Variables Map at time t
(link)if the following are true:
- Expression Stack at time t = [ [ ], [ [ obj_name.method_name(args), ys ], rest ] ]
- value at obj_name in map (Variables Map at time t) = Python reference index
- the element at index index of stack (Python Object Store at time t) = Python object: [ entry "__class_name__": class_name, e_rest ]
- method parameters where the Class Map is (Class Map at time t), class name is class_name, and method name is method_name = params
- Parameters List at time t = None
- Value Stack at time t = [ values, v_stack ]
then Control Map at time (t + 1) = Control Map at time t
(link)if the following are true:
- Expression Stack at time t = [ [ ], [ [ obj_name.method_name(args), ys ], rest ] ]
- value at obj_name in map (Variables Map at time t) = Python reference index
- the element at index index of stack (Python Object Store at time t) = Python object: [ entry "__class_name__": class_name, e_rest ]
- method parameters where the Class Map is (Class Map at time t), class name is class_name, and method name is method_name = params
- Parameters List at time t = None
- Value Stack at time t = [ values, v_stack ]
then Python Object Store at time (t + 1) = Python Object Store at time t
(link)if the following are true:
- Expression Stack at time t = [ [ ], [ [ obj_name.method_name(args), ys ], rest ] ]
- value at obj_name in map (Variables Map at time t) = Python reference index
- the element at index index of stack (Python Object Store at time t) = Python object: [ entry "__class_name__": class_name, e_rest ]
- method parameters where the Class Map is (Class Map at time t), class name is class_name, and method name is method_name = params
- Parameters List at time t = None
- Value Stack at time t = [ values, v_stack ]
then Context Stack at time (t + 1) = Context Stack at time t
(link)if the following are true:
- Expression Stack at time t = [ [ ], [ [ obj_name.method_name(args), ys ], rest ] ]
- value at obj_name in map (Variables Map at time t) = Python reference index
- the element at index index of stack (Python Object Store at time t) = Python object: [ entry "__class_name__": class_name, e_rest ]
- method parameters where the Class Map is (Class Map at time t), class name is class_name, and method name is method_name = params
- Parameters List at time t = None
- Value Stack at time t = [ values, v_stack ]
then the line at time (t + 1) = the line at time t
(link)if the following are true:
- Expression Stack at time t = [ [ ], [ [ obj_name.method_name(args), ys ], rest ] ]
- value at obj_name in map (Variables Map at time t) = Python reference index
- the element at index index of stack (Python Object Store at time t) = Python object: [ entry "__class_name__": class_name, e_rest ]
- method parameters where the Class Map is (Class Map at time t), class name is class_name, and method name is method_name = params
- Parameters List at time t = None
- Value Stack at time t = [ values, v_stack ]
then the tab at time (t + 1) = the tab at time t
(link)if the following are true:
- Parameters List at time t = [ ]
- Expression Stack at time t = [ [ ], [ [ obj_name.method_name(args), ys ], rest ] ]
- value at obj_name in map (Variables Map at time t) = Python reference index
- the element at index index of stack (Python Object Store at time t) = Python object: [ entry "__class_name__": class_name, e_rest ]
- line number of method method_name of class class_name in (Class Map at time t) = line
then the line at time (t + 1) = line + 1
(link)if the following are true:
- Parameters List at time t = [ ]
- Expression Stack at time t = [ [ ], [ [ obj_name.method_name(args), ys ], rest ] ]
- value at obj_name in map (Variables Map at time t) = Python reference index
- the element at index index of stack (Python Object Store at time t) = Python object: [ entry "__class_name__": class_name, e_rest ]
- line number of method method_name of class class_name in (Class Map at time t) = line
then the tab at time (t + 1) = 2
(link)if the following are true:
- Parameters List at time t = [ ]
- Expression Stack at time t = [ [ ], [ [ obj_name.method_name(args), ys ], rest ] ]
- value at obj_name in map (Variables Map at time t) = Python reference index
- the element at index index of stack (Python Object Store at time t) = Python object: [ entry "__class_name__": class_name, e_rest ]
- line number of method method_name of class class_name in (Class Map at time t) = line
then Control Map at time (t + 1) = [ entry 0: (pair ("class", class_name)), [ entry 1: (pair ("method", method_name)), [ ] ] ]
(link)if the following are true:
- Expression Stack at time t = [ [ ], [ [ obj.attr, ys ], rest ] ]
- Value Stack at time t = [ [ Python reference index, [ ] ], [ next_level, other_levels ] ]
- the element at index index of stack (Python Object Store at time t) = Python object: attributes
then Value Stack at time (t + 1) = [ [ value at attr in map attributes, next_level ], other_levels ]
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", method_name)
then Python Object Store at time (t + 1) = Python Object Store at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", method_name)
then Class Map at time (t + 1) = Class Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", mname)
- Context Stack at time t = [ program context with variables: varis and expression state: (expression state with expression stack: expr_stack values: value_stack line: line tab: tab) and control map: control_map, rest ]
then Variables Map at time (t + 1) = varis
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", mname)
- Context Stack at time t = [ program context with variables: varis and expression state: (expression state with expression stack: expr_stack values: value_stack line: line tab: tab) and control map: control_map, rest ]
then the line at time (t + 1) = line
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", mname)
- Context Stack at time t = [ program context with variables: varis and expression state: (expression state with expression stack: expr_stack values: value_stack line: line tab: tab) and control map: control_map, rest ]
then the tab at time (t + 1) = tab
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", mname)
- Context Stack at time t = [ program context with variables: varis and expression state: (expression state with expression stack: expr_stack values: value_stack line: line tab: tab) and control map: control_map, rest ]
then Expression Stack at time (t + 1) = expr_stack
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", mname)
- Context Stack at time t = [ program context with variables: varis and expression state: (expression state with expression stack: expr_stack values: value_stack line: line tab: tab) and control map: control_map, rest ]
then Context Stack at time (t + 1) = rest
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", mname)
- Context Stack at time t = [ program context with variables: varis and expression state: (expression state with expression stack: expr_stack values: value_stack line: line tab: tab) and control map: control_map, rest ]
then Value Stack at time (t + 1) = value_stack
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", mname)
- Context Stack at time t = [ program context with variables: varis and expression state: (expression state with expression stack: expr_stack values: value_stack line: line tab: tab) and control map: control_map, rest ]
then Control Map at time (t + 1) = control_map
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", "__init__")
then Return Value at time (t + 1) = [ value at self in map (Variables Map at time t), [ ] ]
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", method_name)
- not (method_name = "__init__")
then Return Value at time (t + 1) = [ None, [ ] ]
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
for target in iterable_ex:
- value at j in map (Control Map at time t) = trio ("for", i, [ elem, rest ])
then Variables Map at time (t + 1) = result of storing elem at key: target in map: (Variables Map at time t)
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
for target in iterable_ex:
- value at j in map (Control Map at time t) = trio ("for", i, [ elem, rest ])
then the line at time (t + 1) = i + 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
for target in iterable_ex:
- value at j in map (Control Map at time t) = trio ("for", i, [ elem, rest ])
then the tab at time (t + 1) = j + 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
for target in iterable_ex:
- value at j in map (Control Map at time t) = trio ("for", i, [ elem, rest ])
then Control Map at time (t + 1) = result of storing (trio ("for", i, rest)) at key: j in map: (Control Map at time t)
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
for target in iterable_ex:
- value at j in map (Control Map at time t) = trio ("for", i, [ elem, rest ])
then Expression Stack at time (t + 1) = [ ]
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
for target in iterable_ex:
- value at j in map (Control Map at time t) = trio ("for", i, [ elem, rest ])
then Context Stack at time (t + 1) = Context Stack at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
for target in iterable_ex:
- value at j in map (Control Map at time t) = trio ("for", i, [ elem, rest ])
then Python Object Store at time (t + 1) = Python Object Store at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
for target in iterable_ex:
- value at j in map (Control Map at time t) = trio ("for", i, [ ])
then the line at time (t + 1) = i + 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
for target in iterable_ex:
- value at j in map (Control Map at time t) = trio ("for", i, [ ])
then the tab at time (t + 1) = j
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
for target in iterable_ex:
- value at j in map (Control Map at time t) = trio ("for", i, [ ])
then Control Map at time (t + 1) = result of deleting the entry with key j from map (Control Map at time t)
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
for target in iterable_ex:
- value at j in map (Control Map at time t) = trio ("for", i, [ ])
then Variables Map at time (t + 1) = Variables Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
for target in iterable_ex:
- value at j in map (Control Map at time t) = trio ("for", i, [ ])
then Expression Stack at time (t + 1) = [ ]
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
for target in iterable_ex:
- value at j in map (Control Map at time t) = trio ("for", i, [ ])
then Context Stack at time (t + 1) = Context Stack at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
for target in iterable_ex:
- value at j in map (Control Map at time t) = trio ("for", i, [ ])
then Python Object Store at time (t + 1) = Python Object Store at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then the line at time (t + 1) = for_line
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then the tab at time (t + 1) = j - 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then Variables Map at time (t + 1) = Variables Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then Context Stack at time (t + 1) = Context Stack at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then Expression Stack at time (t + 1) = Expression Stack at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then Python Object Store at time (t + 1) = Python Object Store at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then Control Map at time (t + 1) = Control Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then Class Map at time (t + 1) = Class Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then the line at time (t + 1) = for_line
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then the tab at time (t + 1) = j - 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then Variables Map at time (t + 1) = Variables Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then Context Stack at time (t + 1) = Context Stack at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then "if" map at time (t + 1) = "if" map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then Expression Stack at time (t + 1) = Expression Stack at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then Python Object Store at time (t + 1) = Python Object Store at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then Control Map at time (t + 1) = Control Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then 'while stack' at time (t + 1) = 'while stack' at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then Class Map at time (t + 1) = Class Map at time t
(link)if the following are true:
- Expression Stack at time t = [ [ ], [ [
super()
, ys ], rest ] ] - Value Stack at time t = [ [ ], [ next_level, other_levels ] ]
- Control Map at time t = [ entry 0: (pair ("class", class_name)), [ entry 1: (pair ("method", method_name)), [ ] ] ]
- definition of method method_name of class class_name in (Class Map at time t) = method_map
- value at "params" in map method_map = [ param_name, other_params ]
- value at param_name in map (Variables Map at time t) = Python reference pi
then Expression Stack at time (t + 1) = [ ys, rest ]
(link)- Expression Stack at time t = [ [ ], [ [
if the following are true:
- Expression Stack at time t = [ [ ], [ [
super()
, ys ], rest ] ] - Value Stack at time t = [ [ ], [ next_level, other_levels ] ]
- Control Map at time t = [ entry 0: (pair ("class", class_name)), [ entry 1: (pair ("method", method_name)), [ ] ] ]
- definition of method method_name of class class_name in (Class Map at time t) = method_map
- value at "params" in map method_map = [ param_name, other_params ]
- value at param_name in map (Variables Map at time t) = Python reference pi
then Value Stack at time (t + 1) = [ [ Python super reference pi class_name, next_level ], other_levels ]
(link)- Expression Stack at time t = [ [ ], [ [
if the following are true:
- Expression Stack at time t = [ [ ], [ [
super()
.method_name(args), ys ], rest ] ] - Value Stack at time t = [ values, [ next_level, other_levels ] ]
- reverse of values = [ Python super reference pi class_name, other_vals ]
- Class Map at time t = cds
- value at "bases" in map (value at class_name in map cds) = base_classes
- definition of method method_name in base classes base_classes in (Class Map at time t) = method_map
- value at "params" in map method_map = [ base_param, other_base_params ]
- Parameters List at time t = None
then Parameters List at time (t + 1) = [ base_param, other_base_params ]
(link)- Expression Stack at time t = [ [ ], [ [
if the following are true:
- Expression Stack at time t = [ [ ], [ [
super()
.method_name(args), ys ], rest ] ] - Value Stack at time t = [ values, [ next_level, other_levels ] ]
- reverse of values = [ Python super reference pi class_name, other_vals ]
- Class Map at time t = cds
- value at "bases" in map (value at class_name in map cds) = base_classes
- definition of method method_name in base classes base_classes in (Class Map at time t) = method_map
- value at "params" in map method_map = [ base_param, other_base_params ]
- Parameters List at time t = None
then Argument Values at time (t + 1) = [ Python super reference pi class_name, other_vals ]
(link)- Expression Stack at time t = [ [ ], [ [
if the following are true:
- Expression Stack at time t = [ [ ], [ [
super()
.method_name(args), ys ], rest ] ] - Value Stack at time t = [ values, [ next_level, other_levels ] ]
- reverse of values = [ Python super reference pi class_name, other_vals ]
- Class Map at time t = cds
- value at "bases" in map (value at class_name in map cds) = base_classes
- definition of method method_name in base classes base_classes in (Class Map at time t) = method_map
- value at "params" in map method_map = [ base_param, other_base_params ]
- Parameters List at time t = None
then Function Variables Map at time (t + 1) = [ ]
(link)- Expression Stack at time t = [ [ ], [ [
if the following are true:
- Expression Stack at time t = [ [ ], [ [
super()
.method_name(args), ys ], rest ] ] - Value Stack at time t = [ values, [ next_level, other_levels ] ]
- reverse of values = [ Python super reference pi class_name, other_vals ]
- Class Map at time t = cds
- value at "bases" in map (value at class_name in map cds) = base_classes
- definition of method method_name in base classes base_classes in (Class Map at time t) = method_map
- value at "params" in map method_map = [ base_param, other_base_params ]
- Parameters List at time t = None
then Value Stack at time (t + 1) = [ next_level, other_levels ]
(link)- Expression Stack at time t = [ [ ], [ [
if the following are true:
- value at class_name in map class_defs = class_def
- value at "methods" in map class_def = methods
- value at method_name in map methods = method_map
then definition of method method_name of class class_name and base classes in class_defs = method_map
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then the line at time (t + 1) = while_line
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then the tab at time (t + 1) = j - 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Variables Map at time (t + 1) = Variables Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then stack at time (t + 1) = stack at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then "if" map at time (t + 1) = "if" map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then expression state at time (t + 1) = expression state at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Python Object Store at time (t + 1) = Python Object Store at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Class Map at time (t + 1) = Class Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Control Map at time (t + 1) = Control Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then the line at time (t + 1) = while_line
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then the tab at time (t + 1) = j - 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Variables Map at time (t + 1) = Variables Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then stack at time (t + 1) = stack at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then expression state at time (t + 1) = expression state at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Python Object Store at time (t + 1) = Python Object Store at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Class Map at time (t + 1) = Class Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Control Map at time (t + 1) = Control Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then the line at time (t + 1) = i
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then the tab at time (t + 1) = j - 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then expression state at time (t + 1) = "not_expr"
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then Variables Map at time (t + 1) = Variables Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then stack at time (t + 1) = stack at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then Class Map at time (t + 1) = Class Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then Control Map at time (t + 1) = Control Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- "break" state at t = "breaking"
- value at (j - 1) in map (Control Map at time t) = control_value
- control_value describes a loop = True
then the line at time (t + 1) = i + 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- "break" state at t = "breaking"
- value at (j - 1) in map (Control Map at time t) = control_value
- control_value describes a loop = True
then "break" state at (t + 1) = "not_breaking"
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- "break" state at t = "breaking"
- value at (j - 1) in map (Control Map at time t) = control_value
- control_value describes a loop = False
then the line at time (t + 1) = i
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- "break" state at t = "breaking"
- value at (j - 1) in map (Control Map at time t) = control_value
- control_value describes a loop = False
then "break" state at (t + 1) = "breaking"
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- "continue" state at t = "continuing"
- value at (j - 1) in map (Control Map at time t) = control_value
- control_value describes a loop = True
then the line at time (t + 1) = while_line
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- "continue" state at t = "continuing"
- value at (j - 1) in map (Control Map at time t) = control_value
- control_value describes a loop = True
then "continue" state at (t + 1) = "not_continuing"
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- "continue" state at t = "continuing"
- value at (j - 1) in map (Control Map at time t) = control_value
- control_value describes a loop = False
then the line at time (t + 1) = i
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- "continue" state at t = "continuing"
- value at (j - 1) in map (Control Map at time t) = control_value
- control_value describes a loop = False
then "continue" state at (t + 1) = "continuing"
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
x = c
- c is a variable
then Variables Map at time (t + 1) = result of storing (value at c in map (Variables Map at time t)) at key: x in map: (Variables Map at time t)
(link)if the following are true:
- expression state at time t = "begin_expr"
- the expression at time t = v
- v is a variable
then Return Value at time (t + 1) = value at x in map (Variables Map at time t)
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", False)
- expression state at time t = "not_expr"
then the expression at time (t + 1) = test
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", False)
- expression state at time t = "not_expr"
then expression state at time (t + 1) = "begin_expr"
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", False)
- expression state at time t = "not_expr"
then the line at time (t + 1) = i
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", False)
- expression state at time t = "not_expr"
then the tab at time (t + 1) = j
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", False)
- expression state at time t = "not_expr"
then Value Stack at time (t + 1) = [ ]
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", False)
- expression state at time t = "not_expr"
then parent stack at time (t + 1) = [ ]
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", False)
- expression state at time t = "not_expr"
then arguments stack at time (t + 1) = [ ]
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", True)
- expression state at time t = "not_expr"
then the line at time (t + 1) = i + 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", True)
- expression state at time t = "not_expr"
then the tab at time (t + 1) = j
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
else:
- value at j in map (Control Map at time t) = pair ("if", False)
then the line at time (t + 1) = i + 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
else:
- value at j in map (Control Map at time t) = pair ("if", False)
then the tab at time (t + 1) = j + 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
else:
- value at j in map (Control Map at time t) = pair ("if", True)
then the line at time (t + 1) = i + 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
else:
- value at j in map (Control Map at time t) = pair ("if", True)
then the tab at time (t + 1) = j
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then the line at time (t + 1) = i
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then the tab at time (t + 1) = j - 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then Variables Map at time (t + 1) = Variables Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then stack at time (t + 1) = stack at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then Python Object Store at time (t + 1) = Python Object Store at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then Class Map at time (t + 1) = Class Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then Control Map at time (t + 1) = Control Map at time t
(link)if the following are true:
- expression state at time t = "call_function_begin"
- Value Stack at time t = [ [ value, [ ] ], stack ]
- the expression at time t =
obj.append(x)
- value at obj in map (Variables Map at time t) = Python reference idx
- the element at index idx of stack (Python Object Store at time t) = Python list entries
then Python Object Store at time (t + 1) = result of storing (Python list (result of appending value to entries)) at index idx of stack (Python Object Store at time t)
(link)if the following are true:
- expression state at time t = "call_function_begin"
- the expression at time t = obj_name.method_name(args)
- value at obj_name in map (Variables Map at time t) = Python reference index
- the element at index index of stack (Python Object Store at time t) = Python object: [ entry "__class_name__": class_name, e_rest ]
- map (Class Map at time t) contains key class_name = True
then expression state at time (t + 1) = "call_build_args"
(link)if the following are true:
- expression state at time t = "call_function_begin"
- the expression at time t = obj_name.method_name(args)
- value at obj_name in map (Variables Map at time t) = Python reference index
- the element at index index of stack (Python Object Store at time t) = Python object: [ entry "__class_name__": class_name, e_rest ]
- method parameters where the Class Map is (Class Map at time t), class name is class_name, and method name is method_name = params
then Parameters List at time (t + 1) = params
(link)if the following are true:
- expression state at time t = "call_function_begin"
- the expression at time t = obj_name.method_name(args)
- value at obj_name in map (Variables Map at time t) = Python reference index
- the element at index index of stack (Python Object Store at time t) = Python object: [ entry "__class_name__": class_name, e_rest ]
- method parameters where the Class Map is (Class Map at time t), class name is class_name, and method name is method_name = params
then Python Object Store at time (t + 1) = Python Object Store at time t
(link)if the following are true:
- expression state at time t = "call_function_begin"
- the expression at time t = obj_name.method_name(args)
- value at obj_name in map (Variables Map at time t) = Python reference index
- the element at index index of stack (Python Object Store at time t) = Python object: [ entry "__class_name__": class_name, e_rest ]
- Value Stack at time t = [ values, v_stack ]
- definition of method method_name of class class_name and base classes in (Class Map at time t) = method_map
then Argument Values at time (t + 1) = [ Python reference index, reverse of values ]
(link)if the following are true:
- expression state at time t = "call_function_begin"
- the expression at time t = obj_name.method_name(args)
- value at obj_name in map (Variables Map at time t) = Python reference index
- the element at index index of stack (Python Object Store at time t) = Python object: [ entry "__class_name__": class_name, e_rest ]
- Value Stack at time t = [ values, v_stack ]
- definition of method method_name of class class_name and base classes in (Class Map at time t) = method_map
then Value Stack at time (t + 1) = v_stack
(link)if the following are true:
- expression state at time t = "call_function_begin"
- Value Stack at time t = [ [ a, [ ] ], stack ]
- the expression at time t = name."pop"(args)
- value at obj in map (Variables Map at time t) = Python reference idx
- the element at index idx of stack (Python Object Store at time t) = Python list entries
then Python Object Store at time (t + 1) = result of storing (Python list (stack after popping a value from stack entries at index a)) at index idx of stack (Python Object Store at time t)
(link)if the following are true:
- expression state at time t = "call_function_begin"
- Value Stack at time t = [ [ a, [ ] ], stack ]
- the expression at time t = name."pop"(args)
- value at obj in map (Variables Map at time t) = Python reference idx
- the element at index idx of stack (Python Object Store at time t) = Python list entries
then Return Value at time (t + 1) = the element at index a of stack entries
(link)if the following are true:
- expression state at time t = "call_function_begin"
- Value Stack at time t = [ [ a, [ Python reference idx, [ ] ] ], stack ]
- the expression at time t = function call with name: "__getitem__" and arguments: args
- the element at index idx of stack (Python Object Store at time t) = Python dictionary entries
then Return Value at time (t + 1) = value at a in map entries
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then the line at time (t + 1) = the line at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then the tab at time (t + 1) = j - 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then expression state at time t = "not_expr"
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then Control Map at time (t + 1) = Control Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then Variables Map at time (t + 1) = Variables Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then stack at time (t + 1) = stack at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then "if" map at time (t + 1) = "if" map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then expression state at time (t + 1) = expression state at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then Python Object Store at time (t + 1) = Python Object Store at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then 'while stack' at time (t + 1) = 'while stack' at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then Class Map at time (t + 1) = Class Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j = a method named method_name with parameters params
- value at class_name in map (Class Map at time t) = class_map
- value at "methods" in map class_map = methods_map
then Class Map at time (t + 1) = result of storing (result of storing (result of storing [ entry "params": params, [ entry "line": i, [ ] ] ] at key: method_name in map: methods_map) at key: "methods" in map: class_map) at key: class_name in map: (Class Map at time t)
(link)if the following are true:
- expression state at time t = "call_build_args"
- Parameters List at time t = [ ]
- the expression at time t = obj_name.method_name(args)
- value at obj_name in map (Variables Map at time t) = Python reference index
- the element at index index of stack (Python Object Store at time t) = Python object: [ entry "__class_name__": class_name, e_rest ]
- line number of method method_name of class class_name in (Class Map at time t) = line
then the line at time (t + 1) = line + 1
(link)if the following are true:
- expression state at time t = "call_build_args"
- Parameters List at time t = [ ]
- the expression at time t = obj_name.method_name(args)
- value at obj_name in map (Variables Map at time t) = Python reference index
- the element at index index of stack (Python Object Store at time t) = Python object: [ entry "__class_name__": class_name, e_rest ]
- line number of method method_name of class class_name in (Class Map at time t) = line
then the tab at time (t + 1) = 2
(link)if the following are true:
- expression state at time t = "call_build_args"
- Parameters List at time t = [ ]
- the expression at time t = obj_name.method_name(args)
- value at obj_name in map (Variables Map at time t) = Python reference index
- the element at index index of stack (Python Object Store at time t) = Python object: [ entry "__class_name__": class_name, e_rest ]
- line number of method method_name of class class_name in (Class Map at time t) = line
then Control Map at time (t + 1) = [ entry 0: (pair ("class", class_name)), [ entry 1: (pair ("method", method_name)), [ ] ] ]
(link)if the following are true:
- expression state at time t = "call_function_begin"
- the expression at time t = obj.attr
- Value Stack at time t = [ [ Python reference index, [ ] ], v_stack ]
- the element at index index of stack (Python Object Store at time t) = Python object: attributes
then Return Value at time (t + 1) = value at attr in map attributes
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", method_name)
then "if" map at time (t + 1) = "if" map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", method_name)
then 'while stack' at time (t + 1) = 'while stack' at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", method_name)
then Python Object Store at time (t + 1) = Python Object Store at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", method_name)
then Class Map at time (t + 1) = Class Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", mname)
- stack at time t = [ program context with variables: varis and expression state: (expression state with parent stack: parent_stack arguments: arg_stack values: value_stack line: line tab: tab) and control map: control_map, rest ]
then Variables Map at time (t + 1) = varis
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", mname)
- stack at time t = [ program context with variables: varis and expression state: (expression state with parent stack: parent_stack arguments: arg_stack values: value_stack line: line tab: tab) and control map: control_map, rest ]
then the line at time (t + 1) = line
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", mname)
- stack at time t = [ program context with variables: varis and expression state: (expression state with parent stack: parent_stack arguments: arg_stack values: value_stack line: line tab: tab) and control map: control_map, rest ]
then the tab at time (t + 1) = tab
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", mname)
- stack at time t = [ program context with variables: varis and expression state: (expression state with parent stack: parent_stack arguments: arg_stack values: value_stack line: line tab: tab) and control map: control_map, rest ]
then expression state at time (t + 1) = "call_returned"
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", mname)
- stack at time t = [ program context with variables: varis and expression state: (expression state with parent stack: parent_stack arguments: arg_stack values: value_stack line: line tab: tab) and control map: control_map, rest ]
then parent stack at time (t + 1) = parent_stack
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", mname)
- stack at time t = [ program context with variables: varis and expression state: (expression state with parent stack: parent_stack arguments: arg_stack values: value_stack line: line tab: tab) and control map: control_map, rest ]
then stack at time (t + 1) = rest
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", mname)
- stack at time t = [ program context with variables: varis and expression state: (expression state with parent stack: parent_stack arguments: arg_stack values: value_stack line: line tab: tab) and control map: control_map, rest ]
then Value Stack at time (t + 1) = value_stack
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", mname)
- stack at time t = [ program context with variables: varis and expression state: (expression state with parent stack: parent_stack arguments: arg_stack values: value_stack line: line tab: tab) and control map: control_map, rest ]
then arguments stack at time (t + 1) = arg_stack
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", mname)
- stack at time t = [ program context with variables: varis and expression state: (expression state with parent stack: parent_stack arguments: arg_stack values: value_stack line: line tab: tab) and control map: control_map, rest ]
then Control Map at time (t + 1) = control_map
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", "__init__")
then Return Value at time (t + 1) = value at self in map (Variables Map at time t)
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", method_name)
- not (method_name = "__init__")
then Return Value at time (t + 1) = None
(link)if the following are true:
- value at j in map map_a = block
- not (the first token in block = "for")
then map map_a does not contain a for loop entry at line: i and tab: j
(link)if the following are true:
- value at j in map map_a = trio ("for", line, ex)
- not (line = i)
then map map_a does not contain a for loop entry at line: i and tab: j
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
for target in iterable_ex:
- value at j in map (Control Map at time t) = trio ("for", i, [ elem, rest ])
then Variables Map at time (t + 1) = result of storing elem at key: target in map: (Variables Map at time t)
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
for target in iterable_ex:
- value at j in map (Control Map at time t) = trio ("for", i, [ elem, rest ])
then the line at time (t + 1) = i + 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
for target in iterable_ex:
- value at j in map (Control Map at time t) = trio ("for", i, [ elem, rest ])
then the tab at time (t + 1) = j + 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
for target in iterable_ex:
- value at j in map (Control Map at time t) = trio ("for", i, [ elem, rest ])
then Control Map at time (t + 1) = result of storing (trio ("for", i, rest)) at key: j in map: (Control Map at time t)
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
for target in iterable_ex:
- value at j in map (Control Map at time t) = trio ("for", i, [ elem, rest ])
then expression state at time (t + 1) = "not_expr"
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
for target in iterable_ex:
- value at j in map (Control Map at time t) = trio ("for", i, [ elem, rest ])
then stack at time (t + 1) = stack at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
for target in iterable_ex:
- value at j in map (Control Map at time t) = trio ("for", i, [ elem, rest ])
then "if" map at time (t + 1) = "if" map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
for target in iterable_ex:
- value at j in map (Control Map at time t) = trio ("for", i, [ elem, rest ])
then Python Object Store at time (t + 1) = Python Object Store at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
for target in iterable_ex:
- value at j in map (Control Map at time t) = trio ("for", i, [ elem, rest ])
then 'while stack' at time (t + 1) = 'while stack' at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
for target in iterable_ex:
- value at j in map (Control Map at time t) = trio ("for", i, [ elem, rest ])
then Class Map at time (t + 1) = Class Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
for target in iterable_ex:
- value at j in map (Control Map at time t) = trio ("for", i, [ ])
then the line at time (t + 1) = i + 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
for target in iterable_ex:
- value at j in map (Control Map at time t) = trio ("for", i, [ ])
then the tab at time (t + 1) = j
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
for target in iterable_ex:
- value at j in map (Control Map at time t) = trio ("for", i, [ ])
then Control Map at time (t + 1) = Control Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
for target in iterable_ex:
- value at j in map (Control Map at time t) = trio ("for", i, [ ])
then Variables Map at time (t + 1) = Variables Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
for target in iterable_ex:
- value at j in map (Control Map at time t) = trio ("for", i, [ ])
then expression state at time (t + 1) = "not_expr"
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
for target in iterable_ex:
- value at j in map (Control Map at time t) = trio ("for", i, [ ])
then stack at time (t + 1) = stack at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
for target in iterable_ex:
- value at j in map (Control Map at time t) = trio ("for", i, [ ])
then "if" map at time (t + 1) = "if" map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
for target in iterable_ex:
- value at j in map (Control Map at time t) = trio ("for", i, [ ])
then Python Object Store at time (t + 1) = Python Object Store at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
for target in iterable_ex:
- value at j in map (Control Map at time t) = trio ("for", i, [ ])
then 'while stack' at time (t + 1) = 'while stack' at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
for target in iterable_ex:
- value at j in map (Control Map at time t) = trio ("for", i, [ ])
then Class Map at time (t + 1) = Class Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then the line at time (t + 1) = for_line
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then the tab at time (t + 1) = j - 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then Variables Map at time (t + 1) = Variables Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then stack at time (t + 1) = stack at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then "if" map at time (t + 1) = "if" map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then expression state at time (t + 1) = expression state at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then Python Object Store at time (t + 1) = Python Object Store at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then Control Map at time (t + 1) = Control Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then 'while stack' at time (t + 1) = 'while stack' at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then Class Map at time (t + 1) = Class Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then the line at time (t + 1) = for_line
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then the tab at time (t + 1) = j - 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then Variables Map at time (t + 1) = Variables Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then stack at time (t + 1) = stack at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then "if" map at time (t + 1) = "if" map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then expression state at time (t + 1) = expression state at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then Python Object Store at time (t + 1) = Python Object Store at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then Control Map at time (t + 1) = Control Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then 'while stack' at time (t + 1) = 'while stack' at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = trio ("for", for_line, iterable)
then Class Map at time (t + 1) = Class Map at time t
(link)if value at method_name in map (value at "methods" in map (value at class_name in map class_defs)) = method_map, then definition of method method_name of class class_name and base classes in class_defs = method_map
(link)if value at method_name in map (value at "methods" in map (value at class_name in map class_defs)) = method_map, then definition of method method_name of class class_name in class_defs = method_map
(link)if the following are true:
- value at class_name in map class_defs = class_def
- value at "methods" in map class_def = methods_map
- map methods_map contains key method_name = False
then definition of method method_name of class class_name and base classes in class_defs = definition of method method_name in base classes (value at "bases" in map class_def) in class_defs
(link)if the following are true:
- value at first_base in map class_defs = class_def
- value at "methods" in map class_def = methods_map
- map methods_map contains key method_name = False
then definition of method method_name in base classes [ first_base, rest ] in class_defs = definition of method method_name in base classes rest in class_defs
(link)if the following are true:
- definition of method method_name of class class_name and base classes in class_defs = method_map
- value at "params" in map method_map = params
then method parameters where the Class Map is class_defs, class name is class_name, and method name is method_name = params
(link)if the following are true:
- definition of method method_name of class class_name and base classes in class_defs = method_map
- value at "line" in map method_map = line
then line number of method method_name of class class_name in class_defs = line
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then the line at time (t + 1) = while_line
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then the tab at time (t + 1) = j - 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Variables Map at time (t + 1) = Variables Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Context Stack at time (t + 1) = Context Stack at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Expression Stack at time (t + 1) = [ ]
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Python Object Store at time (t + 1) = Python Object Store at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Class Map at time (t + 1) = Class Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Control Map at time (t + 1) = Control Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then the line at time (t + 1) = while_line
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then the tab at time (t + 1) = j - 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Variables Map at time (t + 1) = Variables Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Context Stack at time (t + 1) = Context Stack at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Expression Stack at time (t + 1) = [ ]
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Python Object Store at time (t + 1) = Python Object Store at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Class Map at time (t + 1) = Class Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Control Map at time (t + 1) = Control Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then the line at time (t + 1) = i
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then the tab at time (t + 1) = j - 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then Expression Stack at time (t + 1) = [ ]
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then Variables Map at time (t + 1) = Variables Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then Context Stack at time (t + 1) = Context Stack at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then Class Map at time (t + 1) = Class Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then Control Map at time (t + 1) = Control Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- "break" state at t = "breaking"
- value at (j - 1) in map (Control Map at time t) = control_value
- control_value describes a loop = True
then the line at time (t + 1) = i + 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- "break" state at t = "breaking"
- value at (j - 1) in map (Control Map at time t) = control_value
- control_value describes a loop = True
then "break" state at (t + 1) = "not_breaking"
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- "break" state at t = "breaking"
- value at (j - 1) in map (Control Map at time t) = control_value
- control_value describes a loop = False
then the line at time (t + 1) = i
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- "break" state at t = "breaking"
- value at (j - 1) in map (Control Map at time t) = control_value
- control_value describes a loop = False
then "break" state at (t + 1) = "breaking"
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- "continue" state at t = "continuing"
- value at (j - 1) in map (Control Map at time t) = control_value
- control_value describes a loop = True
then the line at time (t + 1) = while_line
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- "continue" state at t = "continuing"
- value at (j - 1) in map (Control Map at time t) = control_value
- control_value describes a loop = True
then "continue" state at (t + 1) = "not_continuing"
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- "continue" state at t = "continuing"
- value at (j - 1) in map (Control Map at time t) = control_value
- control_value describes a loop = False
then the line at time (t + 1) = i
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- "continue" state at t = "continuing"
- value at (j - 1) in map (Control Map at time t) = control_value
- control_value describes a loop = False
then "continue" state at (t + 1) = "continuing"
(link)if the following are true:
- Expression Stack at time t = [ [ x, ys ], rest ]
- Value Stack at time t = [ values, v_rest ]
- x is a variable
then Value Stack at time (t + 1) = [ [ value at x in map (Variables Map at time t), values ], v_rest ]
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", False)
- Expression Stack at time t = [ ]
then Expression Stack at time (t + 1) = [ [ expr, [ ] ], [ ] ]
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", False)
- Expression Stack at time t = [ ]
then Value Stack at time (t + 1) = [ [ ], [ ] ]
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", False)
- Expression Stack at time t = [ ]
then the line at time (t + 1) = i
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", False)
- Expression Stack at time t = [ ]
then the tab at time (t + 1) = j
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", False)
- Expression Stack at time t = [ ]
then Variables Map at time (t + 1) = Variables Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", False)
- Expression Stack at time t = [ ]
then Control Map at time (t + 1) = Control Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", False)
- Expression Stack at time t = [ ]
then Python Object Store at time (t + 1) = Python Object Store at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", False)
- Expression Stack at time t = [ ]
then Context Stack at time (t + 1) = Context Stack at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", True)
- Expression Stack at time t = [ ]
then the line at time (t + 1) = i + 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", True)
- Expression Stack at time t = [ ]
then the tab at time (t + 1) = j
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", True)
- Expression Stack at time t = [ ]
then Variables Map at time (t + 1) = Variables Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", True)
- Expression Stack at time t = [ ]
then Control Map at time (t + 1) = Control Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", True)
- Expression Stack at time t = [ ]
then Python Object Store at time (t + 1) = Python Object Store at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", True)
- Expression Stack at time t = [ ]
then Context Stack at time (t + 1) = Context Stack at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
else:
- value at j in map (Control Map at time t) = pair ("if", False)
then the line at time (t + 1) = i + 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
else:
- value at j in map (Control Map at time t) = pair ("if", False)
then the tab at time (t + 1) = j + 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
else:
- value at j in map (Control Map at time t) = pair ("if", True)
then the line at time (t + 1) = i + 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
else:
- value at j in map (Control Map at time t) = pair ("if", True)
then the tab at time (t + 1) = j
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then the line at time (t + 1) = i
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then the tab at time (t + 1) = j - 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then Variables Map at time (t + 1) = Variables Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then Context Stack at time (t + 1) = Context Stack at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then Python Object Store at time (t + 1) = Python Object Store at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then Class Map at time (t + 1) = Class Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then Control Map at time (t + 1) = Control Map at time t
(link)
Comments
Please log in to add comments