Proof: Cosine 2a
Let's prove the following theorem:
if ∠ABC is a right angle, then cosine of (m∠CAB) = (distance BA) / (distance AC)
    
    
    
    Proof:
  
      
      Given
      
    
    
      
  
  
| 1 | ∠ABC is a right angle | 
|---|
| # | Claim | Reason | 
|---|---|---|
| 1 | cosine of (m∠CAB) = (distance BA) / (distance CA) | if ∠ABC is a right angle, then cosine of (m∠CAB) = (distance BA) / (distance CA) | 
| 2 | distance CA = distance AC | distance CA = distance AC | 
| 3 | (distance BA) / (distance CA) = (distance BA) / (distance AC) | if distance CA = distance AC, then (distance BA) / (distance CA) = (distance BA) / (distance AC) | 
| 4 | cosine of (m∠CAB) = (distance BA) / (distance AC) | if cosine of (m∠CAB) = (distance BA) / (distance CA) and (distance BA) / (distance CA) = (distance BA) / (distance AC), then cosine of (m∠CAB) = (distance BA) / (distance AC) | 
Comments
Please log in to add comments