Alternate Interior Angles Theorem
if m∠WSX = 180 and m∠YTZ = 180 and m∠WST = m∠STZ, then WX || YZ
This is a proof by contradiction
Given(s)
- m∠WSX = 180
- m∠YTZ = 180
Contradiction
Proof Table
# | Claim | Reason |
---|---|---|
1 | m∠WPX = 180 | if line WX intersects line YZ at point P, then m∠WPX = 180 |
2 | m∠WSP = 180 | if m∠WSX = 180 and m∠WPX = 180, then m∠WSP = 180 |
3 | m∠YPZ = 180 | if line WX intersects line YZ at point P, then m∠YPZ = 180 |
4 | m∠TPZ = 180 | if m∠YTZ = 180 and m∠YPZ = 180, then m∠TPZ = 180 |
5 | m∠WST > m∠STP | if m∠WSP = 180, then m∠WST > m∠STP |
6 | m∠STP = m∠STZ | if m∠TPZ = 180, then m∠STP = m∠STZ |
7 | m∠WST > m∠STZ | if m∠WST > m∠STP and m∠STP = m∠STZ, then m∠WST > m∠STZ |
Conclusion
WX || YZ
Comments
Please log in to add comments