Proof: If Parallelogram Diagonal Then Congruent Triangles
Let's prove the following theorem:
if WXYZ is a parallelogram, then △ZWY ≅ △XYW
Proof:
Given
1 | WXYZ is a parallelogram |
---|
# | Claim | Reason |
---|---|---|
1 | WX || ZY | if WXYZ is a parallelogram, then WX || ZY |
2 | WZ || XY | if WXYZ is a parallelogram, then WZ || XY |
3 | m∠XWY = m∠WYZ | if WX || ZY, then m∠XWY = m∠WYZ |
4 | m∠WYZ = m∠YWX | if m∠XWY = m∠WYZ, then m∠WYZ = m∠YWX |
5 | m∠ZWY = m∠WYX | if WZ || XY, then m∠ZWY = m∠WYX |
6 | m∠ZWY = m∠XYW | if m∠ZWY = m∠WYX, then m∠ZWY = m∠XYW |
7 | distance WY = distance YW | distance WY = distance YW |
8 | △ZWY ≅ △XYW | if m∠ZWY = m∠XYW and distance WY = distance YW and m∠WYZ = m∠YWX, then △ZWY ≅ △XYW |
Comments
Please log in to add comments