Proof: If Angles Congruent Then Parallelogram

Let's prove the following theorem:

if m∠XYZ = m∠ZWX and m∠WXY = m∠YZW, then WXYZ is a parallelogram

Z W X Y

Proof:

View as a tree | View dependent proofs | Try proving it

Given
1 m∠XYZ = m∠ZWX
2 m∠WXY = m∠YZW
Proof Table
# Claim Reason
1 quadrilateral WXYZ is convex if m∠WXY = m∠YZW and m∠XYZ = m∠ZWX, then quadrilateral WXYZ is convex
2 (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠ZWX) = 360 if quadrilateral WXYZ is convex, then (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠ZWX) = 360
3 (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠XYZ) = 360 if (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠ZWX) = 360 and m∠XYZ = m∠ZWX, then (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠XYZ) = 360
4 ((m∠WXY) + (m∠XYZ)) + (m∠YZW) = ((m∠WXY) + (m∠XYZ)) + (m∠WXY) if m∠WXY = m∠YZW, then ((m∠WXY) + (m∠XYZ)) + (m∠YZW) = ((m∠WXY) + (m∠XYZ)) + (m∠WXY)
5 (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠XYZ) = (((m∠WXY) + (m∠XYZ)) + (m∠WXY)) + (m∠XYZ) if ((m∠WXY) + (m∠XYZ)) + (m∠YZW) = ((m∠WXY) + (m∠XYZ)) + (m∠WXY), then (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠XYZ) = (((m∠WXY) + (m∠XYZ)) + (m∠WXY)) + (m∠XYZ)
6 (((m∠WXY) + (m∠XYZ)) + (m∠WXY)) + (m∠XYZ) = 360 if (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠XYZ) = (((m∠WXY) + (m∠XYZ)) + (m∠WXY)) + (m∠XYZ) and (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠XYZ) = 360, then (((m∠WXY) + (m∠XYZ)) + (m∠WXY)) + (m∠XYZ) = 360
7 (m∠WXY) + (m∠XYZ) = 180 if (((m∠WXY) + (m∠XYZ)) + (m∠WXY)) + (m∠XYZ) = 360, then (m∠WXY) + (m∠XYZ) = 180
8 (m∠WXY) + (m∠ZYX) = 180 if (m∠WXY) + (m∠XYZ) = 180, then (m∠WXY) + (m∠ZYX) = 180
9 WXY and ∠ZYX are supplementary if (m∠WXY) + (m∠ZYX) = 180, then ∠WXY and ∠ZYX are supplementary
10 WX || ZY if ∠WXY and ∠ZYX are supplementary, then WX || ZY
11 (m∠WXY) + (m∠ZWX) = 180 if (m∠WXY) + (m∠XYZ) = 180 and m∠XYZ = m∠ZWX, then (m∠WXY) + (m∠ZWX) = 180
12 (m∠ZWX) + (m∠WXY) = 180 if (m∠WXY) + (m∠ZWX) = 180, then (m∠ZWX) + (m∠WXY) = 180
13 m∠WXY = m∠YXW m∠WXY = m∠YXW
14 (m∠ZWX) + (m∠YXW) = 180 if (m∠ZWX) + (m∠WXY) = 180 and m∠WXY = m∠YXW, then (m∠ZWX) + (m∠YXW) = 180
15 ZWX and ∠YXW are supplementary if (m∠ZWX) + (m∠YXW) = 180, then ∠ZWX and ∠YXW are supplementary
16 ZW || YX if ∠ZWX and ∠YXW are supplementary, then ZW || YX
17 WZ || XY if ZW || YX, then WZ || XY
18 WXYZ is a parallelogram if WX || ZY and WZ || XY, then WXYZ is a parallelogram

Comments

Please log in to add comments