Proof: If Angles Congruent Then Parallelogram
Let's prove the following theorem:
if m∠XYZ = m∠ZWX and m∠WXY = m∠YZW, then WXYZ is a parallelogram
Proof:
Proof Table
# | Claim | Reason |
---|---|---|
1 | quadrilateral WXYZ is convex | if m∠WXY = m∠YZW and m∠XYZ = m∠ZWX, then quadrilateral WXYZ is convex |
2 | (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠ZWX) = 360 | if quadrilateral WXYZ is convex, then (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠ZWX) = 360 |
3 | (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠XYZ) = 360 | if (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠ZWX) = 360 and m∠XYZ = m∠ZWX, then (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠XYZ) = 360 |
4 | ((m∠WXY) + (m∠XYZ)) + (m∠YZW) = ((m∠WXY) + (m∠XYZ)) + (m∠WXY) | if m∠WXY = m∠YZW, then ((m∠WXY) + (m∠XYZ)) + (m∠YZW) = ((m∠WXY) + (m∠XYZ)) + (m∠WXY) |
5 | (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠XYZ) = (((m∠WXY) + (m∠XYZ)) + (m∠WXY)) + (m∠XYZ) | if ((m∠WXY) + (m∠XYZ)) + (m∠YZW) = ((m∠WXY) + (m∠XYZ)) + (m∠WXY), then (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠XYZ) = (((m∠WXY) + (m∠XYZ)) + (m∠WXY)) + (m∠XYZ) |
6 | (((m∠WXY) + (m∠XYZ)) + (m∠WXY)) + (m∠XYZ) = 360 | if (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠XYZ) = (((m∠WXY) + (m∠XYZ)) + (m∠WXY)) + (m∠XYZ) and (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠XYZ) = 360, then (((m∠WXY) + (m∠XYZ)) + (m∠WXY)) + (m∠XYZ) = 360 |
7 | (m∠WXY) + (m∠XYZ) = 180 | if (((m∠WXY) + (m∠XYZ)) + (m∠WXY)) + (m∠XYZ) = 360, then (m∠WXY) + (m∠XYZ) = 180 |
8 | (m∠WXY) + (m∠ZYX) = 180 | if (m∠WXY) + (m∠XYZ) = 180, then (m∠WXY) + (m∠ZYX) = 180 |
9 | ∠WXY and ∠ZYX are supplementary | if (m∠WXY) + (m∠ZYX) = 180, then ∠WXY and ∠ZYX are supplementary |
10 | WX || ZY | if ∠WXY and ∠ZYX are supplementary, then WX || ZY |
11 | (m∠WXY) + (m∠ZWX) = 180 | if (m∠WXY) + (m∠XYZ) = 180 and m∠XYZ = m∠ZWX, then (m∠WXY) + (m∠ZWX) = 180 |
12 | (m∠ZWX) + (m∠WXY) = 180 | if (m∠WXY) + (m∠ZWX) = 180, then (m∠ZWX) + (m∠WXY) = 180 |
13 | m∠WXY = m∠YXW | m∠WXY = m∠YXW |
14 | (m∠ZWX) + (m∠YXW) = 180 | if (m∠ZWX) + (m∠WXY) = 180 and m∠WXY = m∠YXW, then (m∠ZWX) + (m∠YXW) = 180 |
15 | ∠ZWX and ∠YXW are supplementary | if (m∠ZWX) + (m∠YXW) = 180, then ∠ZWX and ∠YXW are supplementary |
16 | ZW || YX | if ∠ZWX and ∠YXW are supplementary, then ZW || YX |
17 | WZ || XY | if ZW || YX, then WZ || XY |
18 | WXYZ is a parallelogram | if WX || ZY and WZ || XY, then WXYZ is a parallelogram |
Comments
Please log in to add comments