Proof: Triangles Inside Rhombus

Let's prove the following theorem:

if WXYZ is a rhombus and m∠WPY = 180 and m∠XPZ = 180, then △PWX ≅ △PYZ

Z W X Y P

Proof:

View as a tree | View dependent proofs | Try proving it

Given
1 WXYZ is a rhombus
2 m∠WPY = 180
3 m∠XPZ = 180
Proof Table
# Claim Reason
1 WXYZ is a parallelogram if WXYZ is a rhombus, then WXYZ is a parallelogram
2 WX || ZY if WXYZ is a parallelogram, then WX || ZY
3 m∠ZYW = m∠YWX if WX || ZY, then m∠ZYW = m∠YWX
4 m∠ZYP = m∠PWX if m∠WPY = 180 and m∠ZYW = m∠YWX, then m∠ZYP = m∠PWX
5 m∠PWX = m∠PYZ if m∠ZYP = m∠PWX, then m∠PWX = m∠PYZ
6 m∠YZX = m∠ZXW if WX || ZY, then m∠YZX = m∠ZXW
7 m∠YZP = m∠PXW if m∠XPZ = 180 and m∠YZX = m∠ZXW, then m∠YZP = m∠PXW
8 m∠WXP = m∠YZP if m∠YZP = m∠PXW, then m∠WXP = m∠YZP
9 distance WX = distance ZY if WXYZ is a parallelogram, then distance WX = distance ZY
10 distance WX = distance YZ if distance WX = distance ZY, then distance WX = distance YZ
11 PWX ≅ △PYZ if m∠PWX = m∠PYZ and distance WX = distance YZ and m∠WXP = m∠YZP, then △PWX ≅ △PYZ
Previous Lesson

Comments

Please log in to add comments