Proof: Example 2

Let's prove the following theorem:

if b > 0, then (0 - 0) / ((b2) - 0) = 0

Proof:

View as a tree | View dependent proofs | Try proving it

Given
1 b > 0
Proof Table
# Claim Reason
1 2 > 0 2 > 0
2 (b2) - 0 = b2 (b2) - 0 = b2
3 b2 = (b2) - 0 if (b2) - 0 = b2, then b2 = (b2) - 0
4 b2 > 0 if b > 0 and 2 > 0, then b2 > 0
5 (b2) - 0 > 0 if b2 > 0 and b2 = (b2) - 0, then (b2) - 0 > 0
6 not ((b2) - 0 = 0) if (b2) - 0 > 0, then not ((b2) - 0 = 0)
7 0 / ((b2) - 0) = 0 if not ((b2) - 0 = 0), then 0 / ((b2) - 0) = 0
8 0 - 0 = 0 0 - 0 = 0
9 (0 - 0) / ((b2) - 0) = 0 / ((b2) - 0) if 0 - 0 = 0, then (0 - 0) / ((b2) - 0) = 0 / ((b2) - 0)
10 (0 - 0) / ((b2) - 0) = 0 if (0 - 0) / ((b2) - 0) = 0 / ((b2) - 0) and 0 / ((b2) - 0) = 0, then (0 - 0) / ((b2) - 0) = 0
Previous Lesson Next Lesson

Comments

Please log in to add comments