Proof: Converseofpowersubstitution
Let's prove the following theorem:
if bm = bn, then m = n
Proof:
Given
1 | bm = bn |
---|
# | Claim | Reason |
---|---|---|
1 | logb(bm) = m | logb(bm) = m |
2 | logb(bn) = n | logb(bn) = n |
3 | logb(bm) = logb(bn) | if bm = bn, then logb(bm) = logb(bn) |
4 | m = n | if logb(bm) = logb(bn) and logb(bm) = m and logb(bn) = n, then m = n |
Comments
Please log in to add comments