Proof: Find Number Example 2

Let's prove the following theorem:

index of value [ 0, [ ] ] in [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] = [ 1, [ ] ]

Proof:

View as a tree | View dependent proofs | Try proving it

Proof Table
# Claim Reason
1 index of value [ 0, [ ] ] in [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] = index of value [ 0, [ ] ] in [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] with current index [ 0, [ ] ] index of value [ 0, [ ] ] in [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] = index of value [ 0, [ ] ] in [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] with current index [ 0, [ ] ]
2 not (1 = 0) not (1 = 0)
3 [1,[]] ≠ [0,[]] if not (1 = 0), then [1,[]] ≠ [0,[]]
4 index of value [ 0, [ ] ] in [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] with current index [ 0, [ ] ] = index of value [ 0, [ ] ] in [ [ 0, [ ] ], [ ] ] with current index (sum of unsigned integers [ 0, [ ] ] and [ 1, [ ] ]) if [1,[]] ≠ [0,[]], then index of value [ 0, [ ] ] in [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] with current index [ 0, [ ] ] = index of value [ 0, [ ] ] in [ [ 0, [ ] ], [ ] ] with current index (sum of unsigned integers [ 0, [ ] ] and [ 1, [ ] ])
5 sum of unsigned integers [ 0, [ ] ] and [ 1, [ ] ] = [ 1, [ ] ] sum of unsigned integers [ 0, [ ] ] and [ 1, [ ] ] = [ 1, [ ] ]
6 index of value [ 0, [ ] ] in [ [ 0, [ ] ], [ ] ] with current index (sum of unsigned integers [ 0, [ ] ] and [ 1, [ ] ]) = index of value [ 0, [ ] ] in [ [ 0, [ ] ], [ ] ] with current index [ 1, [ ] ] if sum of unsigned integers [ 0, [ ] ] and [ 1, [ ] ] = [ 1, [ ] ], then index of value [ 0, [ ] ] in [ [ 0, [ ] ], [ ] ] with current index (sum of unsigned integers [ 0, [ ] ] and [ 1, [ ] ]) = index of value [ 0, [ ] ] in [ [ 0, [ ] ], [ ] ] with current index [ 1, [ ] ]
7 index of value [ 0, [ ] ] in [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] with current index [ 0, [ ] ] = index of value [ 0, [ ] ] in [ [ 0, [ ] ], [ ] ] with current index [ 1, [ ] ] if index of value [ 0, [ ] ] in [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] with current index [ 0, [ ] ] = index of value [ 0, [ ] ] in [ [ 0, [ ] ], [ ] ] with current index (sum of unsigned integers [ 0, [ ] ] and [ 1, [ ] ]) and index of value [ 0, [ ] ] in [ [ 0, [ ] ], [ ] ] with current index (sum of unsigned integers [ 0, [ ] ] and [ 1, [ ] ]) = index of value [ 0, [ ] ] in [ [ 0, [ ] ], [ ] ] with current index [ 1, [ ] ], then index of value [ 0, [ ] ] in [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] with current index [ 0, [ ] ] = index of value [ 0, [ ] ] in [ [ 0, [ ] ], [ ] ] with current index [ 1, [ ] ]
8 [0,[]] = [0,[]] [0,[]] = [0,[]]
9 index of value [ 0, [ ] ] in [ [ 0, [ ] ], [ ] ] with current index [ 1, [ ] ] = [ 1, [ ] ] if [0,[]] = [0,[]], then index of value [ 0, [ ] ] in [ [ 0, [ ] ], [ ] ] with current index [ 1, [ ] ] = [ 1, [ ] ]
10 index of value [ 0, [ ] ] in [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] with current index [ 0, [ ] ] = [ 1, [ ] ] if index of value [ 0, [ ] ] in [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] with current index [ 0, [ ] ] = index of value [ 0, [ ] ] in [ [ 0, [ ] ], [ ] ] with current index [ 1, [ ] ] and index of value [ 0, [ ] ] in [ [ 0, [ ] ], [ ] ] with current index [ 1, [ ] ] = [ 1, [ ] ], then index of value [ 0, [ ] ] in [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] with current index [ 0, [ ] ] = [ 1, [ ] ]
11 index of value [ 0, [ ] ] in [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] = [ 1, [ ] ] if index of value [ 0, [ ] ] in [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] = index of value [ 0, [ ] ] in [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] with current index [ 0, [ ] ] and index of value [ 0, [ ] ] in [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] with current index [ 0, [ ] ] = [ 1, [ ] ], then index of value [ 0, [ ] ] in [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] = [ 1, [ ] ]

Comments

Please log in to add comments