Proof: Collinear Points Theorem

Let's prove the following theorem:

if m∠ABC = 180, then (m∠ABX) + (m∠XBC) = 180

X A B C

Proof:

View as a tree | View dependent proofs | Try proving it

Given
1 m∠ABC = 180
Proof Table
# Claim Reason
1 m∠ABC = (m∠ABX) + (m∠XBC) if m∠ABC = 180, then m∠ABC = (m∠ABX) + (m∠XBC)
2 (m∠ABX) + (m∠XBC) = 180 if m∠ABC = (m∠ABX) + (m∠XBC) and m∠ABC = 180, then (m∠ABX) + (m∠XBC) = 180
Previous Lesson Next Lesson

Comments

Please log in to add comments