Proof: Similar Triangles Theorem
Let's prove the following theorem:
if m∠CAB = m∠ZXY and m∠ABC = m∠XYZ, then △ABC ∼ △XYZ
Proof:
Proof Table
# | Claim | Reason |
---|---|---|
1 | m∠CAB = m∠NLM | if △ABC ∼ △LMN, then m∠CAB = m∠NLM |
2 | m∠ABC = m∠LMN | if △ABC ∼ △LMN, then m∠ABC = m∠LMN |
3 | m∠NLM = m∠ZXY | if m∠CAB = m∠NLM and m∠CAB = m∠ZXY, then m∠NLM = m∠ZXY |
4 | m∠LMN = m∠XYZ | if m∠ABC = m∠LMN and m∠ABC = m∠XYZ, then m∠LMN = m∠XYZ |
5 | △NLM ≅ △ZXY | if m∠NLM = m∠ZXY and distance LM = distance XY and m∠LMN = m∠XYZ, then △NLM ≅ △ZXY |
6 | △LMN ≅ △XYZ | if △NLM ≅ △ZXY, then △LMN ≅ △XYZ |
7 | △LMN ∼ △XYZ | if △LMN ≅ △XYZ, then △LMN ∼ △XYZ |
8 | △ABC ∼ △XYZ | if △ABC ∼ △LMN and △LMN ∼ △XYZ, then △ABC ∼ △XYZ |
Comments
Please log in to add comments