Proof: Similar Triangles Example 3
Let's prove the following theorem:
if ∠ZXY is a right angle and ∠XPY is a right angle and m∠YPZ = 180, then △PXZ ∼ △XYZ
Proof:
Given
1 | ∠ZXY is a right angle |
---|---|
2 | ∠XPY is a right angle |
3 | m∠YPZ = 180 |
# | Claim | Reason |
---|---|---|
1 | ∠YPX and ∠XPZ are supplementary | if m∠YPZ = 180, then ∠YPX and ∠XPZ are supplementary |
2 | (m∠YPX) + (m∠XPZ) = 180 | if ∠YPX and ∠XPZ are supplementary, then (m∠YPX) + (m∠XPZ) = 180 |
3 | m∠YPX = 90 | if ∠XPY is a right angle, then m∠YPX = 90 |
4 | 90 + (m∠XPZ) = 180 | if (m∠YPX) + (m∠XPZ) = 180 and m∠YPX = 90, then 90 + (m∠XPZ) = 180 |
5 | m∠XPZ = 90 | if 90 + (m∠XPZ) = 180, then m∠XPZ = 90 |
6 | m∠ZPX = 90 | if m∠XPZ = 90, then m∠ZPX = 90 |
7 | ∠ZPX is a right angle | if m∠ZPX = 90, then ∠ZPX is a right angle |
8 | m∠ZXY = m∠ZPX | if ∠ZXY is a right angle and ∠ZPX is a right angle, then m∠ZXY = m∠ZPX |
9 | m∠YZX = m∠PZX | if m∠YPZ = 180, then m∠YZX = m∠PZX |
10 | m∠YZX = m∠XZP | if m∠YZX = m∠PZX, then m∠YZX = m∠XZP |
11 | △ZXY ∼ △ZPX | if m∠YZX = m∠XZP and m∠ZXY = m∠ZPX, then △ZXY ∼ △ZPX |
12 | △XYZ ∼ △PXZ | if △ZXY ∼ △ZPX, then △XYZ ∼ △PXZ |
13 | △PXZ ∼ △XYZ | if △XYZ ∼ △PXZ, then △PXZ ∼ △XYZ |
Comments
Please log in to add comments