Distance Property 2
Transitive Property of Equality Variation 2
Distance Property 1
Angle Symmetry Example 2
Collinear Angles Property 9
Transitive Property Application 2
Angles of an Isosceles Triangle
Angle Symmetry Example
Angle Symmetry 2
Isosceles Triangle B
Angle Symmetry B
Collinear Then 180
Subtract Both Sides
Add Term to Both Sides 6
Subtract Both Sides 2
Add Term to Both Sides 7
Transitive Property of Equality Variation 1
Vertical Angles
Angle Addition Theorem
Collinear Angles B
Exterior Angle
Exterior Angle B
Collinear Angles Property 10
Collinear Angles Property 3
Collinear Angles Property 3 B
Collinear Angles Property 3 C
alternate interior angles then parallel
ParallelThenAIA
Parallelthenaiashort
Commutative Property Example 2
Commutative Property Variation 1
Substitution 2
Substitution 8
Substitution Example 10
Substitute First Term
Triangles Sum to 180
Multiplicative Identity 2
Distributive Property 4
Multiplicative Property of Equality Variation 1
Addition Theorem
One Eighty 3
Divide Both Sides
Multiplicative Property of Equality Variation 2
Transitive Property of Equality Variation 3
Division is Commutative
Associative Property
Divide Each Side
Three Angles
Parallel Then Aia Short Mirror
Angle Symmetry 4
If Parallelogram Diagonal Then Congruent Triangles
If Parallelogram Then Sides Congruent
Sides of Rhombus Congruent 3
If Parallelogram Then Sides Congruent B
If Parallelogram Then Sides Congruent B2
Sides of Rhombus Congruent
Distance Property 4
Sides of Rhombus Congruent 2
Distance Property 5
Equilateral Sides 3
Rhombus Diagonal Equilateral Triangles

Proof: Exterior Angle B

Let's prove the following theorem:

if m∠EZX = 180, then m∠EZY > m∠ZYX

Z E X Y

Proof:

View as a tree | View dependent proofs | Try proving it

Given
1 m∠EZX = 180
Proof Table
# Claim Reason
1 m∠XZE = 180 if m∠EZX = 180, then m∠XZE = 180
2 m∠ZYX < m∠YZE if m∠XZE = 180, then m∠ZYX < m∠YZE
3 m∠YZE > m∠ZYX if m∠ZYX < m∠YZE, then m∠YZE > m∠ZYX
4 m∠YZE = m∠EZY m∠YZE = m∠EZY
5 m∠EZY > m∠ZYX if m∠YZE > m∠ZYX and m∠YZE = m∠EZY, then m∠EZY > m∠ZYX
Previous Lesson Next Lesson

Comments

Please log in to add comments