Proof: Exterior Angle B
Let's prove the following theorem:
if m∠EZX = 180, then m∠EZY > m∠ZYX
    
    
Proof:
  
      
      Given
      
    
    
      
  
  
| 1 | m∠EZX = 180 | 
|---|
| # | Claim | Reason | 
|---|---|---|
| 1 | m∠XZE = 180 | if m∠EZX = 180, then m∠XZE = 180 | 
| 2 | m∠ZYX < m∠YZE | if m∠XZE = 180, then m∠ZYX < m∠YZE | 
| 3 | m∠YZE > m∠ZYX | if m∠ZYX < m∠YZE, then m∠YZE > m∠ZYX | 
| 4 | m∠YZE = m∠EZY | m∠YZE = m∠EZY | 
| 5 | m∠EZY > m∠ZYX | if m∠YZE > m∠ZYX and m∠YZE = m∠EZY, then m∠EZY > m∠ZYX | 
Comments
Please log in to add comments