Distance Property 2
Transitive Property of Equality Variation 2
Distance Property 1
Angle Symmetry Example 2
Collinear Angles Property 9
Transitive Property Application 2
Angles of an Isosceles Triangle
Angle Symmetry Example
Angle Symmetry 2
Isosceles Triangle B
Angle Symmetry B
Collinear Then 180
Subtract Both Sides
Add Term to Both Sides 6
Subtract Both Sides 2
Add Term to Both Sides 7
Transitive Property of Equality Variation 1
Vertical Angles
Angle Addition Theorem
Collinear Angles B
Exterior Angle
Exterior Angle B
Collinear Angles Property 10
Collinear Angles Property 3
Collinear Angles Property 3 B
Collinear Angles Property 3 C
alternate interior angles then parallel
ParallelThenAIA
Parallelthenaiashort
Commutative Property Example 2
Commutative Property Variation 1
Substitution 2
Substitution 8
Substitution Example 10
Substitute First Term
Triangles Sum to 180
Multiplicative Identity 2
Distributive Property 4
Multiplicative Property of Equality Variation 1
Addition Theorem
One Eighty 3
Divide Both Sides
Multiplicative Property of Equality Variation 2
Transitive Property of Equality Variation 3
Division is Commutative
Associative Property
Divide Each Side
Three Angles
Parallel Then Aia Short Mirror
Angle Symmetry 4
If Parallelogram Diagonal Then Congruent Triangles
If Parallelogram Then Sides Congruent
Sides of Rhombus Congruent 3
If Parallelogram Then Sides Congruent B
If Parallelogram Then Sides Congruent B2
Sides of Rhombus Congruent
Distance Property 4
Sides of Rhombus Congruent 2
Distance Property 5
Equilateral Sides 3
Rhombus Diagonal Equilateral Triangles

Proof: Triangles Sum to 180

Let's prove the following theorem:

((m∠YWX) + (m∠WXY)) + (m∠XYW) = 180

W Y Z X P

Proof:

View as a tree | View dependent proofs | Try proving it

Assumptions
1 ZX || WY
2 m∠ZXP = 180
Proof Table
# Claim Reason
1 m∠ZXW = m∠XWY if ZX || WY, then m∠ZXW = m∠XWY
2 XP || WY if ZX || WY and m∠ZXP = 180, then XP || WY
3 PX || YW if XP || WY, then PX || YW
4 m∠PXY = m∠XYW if PX || YW, then m∠PXY = m∠XYW
5 point W lies in interior of ∠ZXY if ZX || WY, then point W lies in interior of ∠ZXY
6 m∠ZXY = (m∠ZXW) + (m∠WXY) if point W lies in interior of ∠ZXY, then m∠ZXY = (m∠ZXW) + (m∠WXY)
7 m∠ZXP = (m∠ZXY) + (m∠YXP) if m∠ZXP = 180, then m∠ZXP = (m∠ZXY) + (m∠YXP)
8 (m∠ZXY) + (m∠YXP) = 180 if m∠ZXP = (m∠ZXY) + (m∠YXP) and m∠ZXP = 180, then (m∠ZXY) + (m∠YXP) = 180
9 ((m∠ZXW) + (m∠WXY)) + (m∠YXP) = 180 if (m∠ZXY) + (m∠YXP) = 180 and m∠ZXY = (m∠ZXW) + (m∠WXY), then ((m∠ZXW) + (m∠WXY)) + (m∠YXP) = 180
10 m∠YXP = m∠XYW if m∠PXY = m∠XYW, then m∠YXP = m∠XYW
11 ((m∠ZXW) + (m∠WXY)) + (m∠XYW) = 180 if ((m∠ZXW) + (m∠WXY)) + (m∠YXP) = 180 and m∠YXP = m∠XYW, then ((m∠ZXW) + (m∠WXY)) + (m∠XYW) = 180
12 (m∠ZXW) + (m∠WXY) = (m∠XWY) + (m∠WXY) if m∠ZXW = m∠XWY, then (m∠ZXW) + (m∠WXY) = (m∠XWY) + (m∠WXY)
13 ((m∠XWY) + (m∠WXY)) + (m∠XYW) = 180 if ((m∠ZXW) + (m∠WXY)) + (m∠XYW) = 180 and (m∠ZXW) + (m∠WXY) = (m∠XWY) + (m∠WXY), then ((m∠XWY) + (m∠WXY)) + (m∠XYW) = 180
14 m∠XWY = m∠YWX m∠XWY = m∠YWX
15 ((m∠YWX) + (m∠WXY)) + (m∠XYW) = 180 if ((m∠XWY) + (m∠WXY)) + (m∠XYW) = 180 and m∠XWY = m∠YWX, then ((m∠YWX) + (m∠WXY)) + (m∠XYW) = 180
Previous Lesson Next Lesson

Comments

Please log in to add comments