Proof: Add Three

Let's prove the following theorem:

(a + a) + a = a3

Proof:

View as a tree | View dependent proofs | Try proving it

Proof Table
# Claim Reason
1 a + a = a2 a + a = a2
2 a = a1 a = a1
3 (a + a) + a = (a2) + a if a + a = a2, then (a + a) + a = (a2) + a
4 (a2) + a = (a2) + (a1) if a = a1, then (a2) + a = (a2) + (a1)
5 (a2) + (a1) = a ⋅ (2 + 1) (a2) + (a1) = a ⋅ (2 + 1)
6 (a2) + a = a ⋅ (2 + 1) if (a2) + a = (a2) + (a1) and (a2) + (a1) = a ⋅ (2 + 1), then (a2) + a = a ⋅ (2 + 1)
7 2 + 1 = 3 2 + 1 = 3
8 a ⋅ (2 + 1) = a3 if 2 + 1 = 3, then a ⋅ (2 + 1) = a3
9 (a2) + a = a3 if (a2) + a = a ⋅ (2 + 1) and a ⋅ (2 + 1) = a3, then (a2) + a = a3
10 (a + a) + a = a3 if (a + a) + a = (a2) + a and (a2) + a = a3, then (a + a) + a = a3
Previous Lesson Next Lesson

Comments

Please log in to add comments