Proof: Subtract 1
Let's prove the following theorem:
(b + a) - a = b
Proof:
| # | Claim | Reason |
|---|---|---|
| 1 | (b + a) - a = b + (a - a) | (b + a) - a = b + (a - a) |
| 2 | a - a = 0 | a - a = 0 |
| 3 | b + (a - a) = b + 0 | if a - a = 0, then b + (a - a) = b + 0 |
| 4 | b + 0 = b | b + 0 = b |
| 5 | b + (a - a) = b | if b + (a - a) = b + 0 and b + 0 = b, then b + (a - a) = b |
| 6 | (b + a) - a = b | if (b + a) - a = b + (a - a) and b + (a - a) = b, then (b + a) - a = b |
Comments
Please log in to add comments