Proofs

A proof is a series of claims that lead to a conclusion. Some proofs are conditional, which means that the claims can only be made under certain conditions. Click on a statement to see the proof

Compare Example Gt
compare bit stack [ 1, [ ] ] and bit stack [ 0, [ ] ] = [ 0, [ 1, [ ] ] ]

Compare Example Two
compare bit stack [ 0, [ 1, [ ] ] ] and bit stack [ 1, [ 1, [ ] ] ] = [ 0, [ 0, [ ] ] ]

Compare Example Three
compare bit stack [ 1, [ 0, [ 1, [ ] ] ] ] and bit stack [ 0, [ 1, [ 1, [ ] ] ] ] = [ 0, [ 0, [ ] ] ]

Less Than Example
[ 0, [ ] ] is less than [ 1, [ ] ]

Greater Than Example
[ 1, [ ] ] is greater than [ 0, [ ] ]

Greater Than Example Two
[ 0, [ 1, [ ] ] ] is greater than [ 0, [ 0, [ ] ] ]

Greater Than Example Two 2
[ 1, [ 1, [ ] ] ] is greater than [ 0, [ 0, [ ] ] ]

Less Than Example Two
[ 1, [ 0, [ 1, [ ] ] ] ] is less than [ 0, [ 1, [ 1, [ ] ] ] ]

Minimum Example
minimum value of stack [ [ 0, [ ] ], [ [ 1, [ ] ], [ ] ] ] = [ 0, [ ] ]

Minimum Example 2
minimum value of stack [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] = [ 0, [ ] ]

Minimum Example Three
minimum value of stack [ [ 1, [ 1, [ ] ] ], [ [ 0, [ 1, [ ] ] ], [ [ 0, [ 0, [ ] ] ], [ ] ] ] ] = [ 0, [ 0, [ ] ] ]

are Equal List Example
[0,[]] = [0,[]]

Subtract Bit Example
bit [ 0, [ 1, [ ] ] ] minus bit 1 = [ 1, [ 0, [ ] ] ]

Push Stack Example
result of dumping [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] to [ [ 0, [ ] ], [ ] ] = [ [ 0, [ ] ], [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] ]

Pop Index Base
remaining elements after [ [ 0, [ ] ], [ ] ] is popped at index [ 0, [ ] ] = [ ]

Pop Index Base 2
remaining elements after [ [ x, [ ] ], [ ] ] is popped at index [ 0, [ ] ] = [ ]

Pop Index Example
remaining elements after [ [ 0, [ ] ], [ [ 1, [ ] ], [ ] ] ] is popped at index [ 1, [ ] ] and visited stack is [ ] = [ [ 0, [ ] ], [ ] ]

Pop Index Example 2
remaining elements after [ [ 0, [ ] ], [ [ 1, [ ] ], [ ] ] ] is popped at index [ 1, [ ] ] = [ [ 0, [ ] ], [ ] ]

Pop Index Example 3
remaining elements after [ x, [ y, [ ] ] ] is popped at index [ 1, [ ] ] and visited stack is [ ] = [ x, [ ] ]

Pop Index Example 3 Extend
remaining elements after [ x, [ y, [ ] ] ] is popped at index [ 1, [ ] ] = [ x, [ ] ]

Find Number Example
index of value [ 0, [ ] ] in [ [ 0, [ ] ], [ ] ] = [ 0, [ ] ]

Find Number Example 2
index of value [ 0, [ ] ] in [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] = [ 1, [ ] ]

Minimum Index One
index of the mininum value in stack [ x, [ ] ] = [ 0, [ ] ]

Minimum Index Example
index of the mininum value in stack [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] = [ 1, [ ] ]

Sort Example
result of sorting [ [ 0, [ ] ], [ ] ] = [ [ 0, [ ] ], [ ] ]

Sort Two
result of sorting [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] = [ [ 0, [ ] ], [ [ 1, [ ] ], [ ] ] ]

Do Push Stack 39 0
result of dumping [ {"ES": "Spain", "MX": "Mexico"}, [ ] ] to [ ] = [ {"ES": "Spain", "MX": "Mexico"}, [ ] ]

Do Push Stack 23 0
result of dumping [ Python object: [ entry "__class_name__": "Dog", [ entry "x": 0, [ ] ] ], [ ] ] to [ ] = [ Python object: [ entry "__class_name__": "Dog", [ entry "x": 0, [ ] ] ], [ ] ]

Do Push Stack 31 0
result of dumping [ Python object: [ entry "__class_name__": "Dog", [ entry "x": 0, [ entry "y": 0, [ ] ] ] ], [ ] ] to [ ] = [ Python object: [ entry "__class_name__": "Dog", [ entry "x": 0, [ entry "y": 0, [ ] ] ] ], [ ] ]

Do Push Stack 61 0
result of dumping [ Python object: [ entry "__class_name__": "Dog", [ entry "x": 5, [ entry "y": 0, [ ] ] ] ], [ ] ] to [ ] = [ Python object: [ entry "__class_name__": "Dog", [ entry "x": 5, [ entry "y": 0, [ ] ] ] ], [ ] ]

Do Push Stack 78 0
result of dumping [ Python object: [ entry "__class_name__": "Dog", [ entry "x": 5, [ entry "y": 5, [ ] ] ] ], [ ] ] to [ ] = [ Python object: [ entry "__class_name__": "Dog", [ entry "x": 5, [ entry "y": 5, [ ] ] ] ], [ ] ]

Do Push Stack 32 0
result of dumping [ Python object: [ entry "__class_name__": "Person", [ entry "first_name": "John", [ ] ] ], [ ] ] to [ ] = [ Python object: [ entry "__class_name__": "Person", [ entry "first_name": "John", [ ] ] ], [ ] ]

Do Push Stack 40 0
result of dumping [ Python object: [ entry "__class_name__": "Person", [ entry "first_name": "John", [ entry "last_name": "Smith", [ ] ] ] ], [ ] ] to [ ] = [ Python object: [ entry "__class_name__": "Person", [ entry "first_name": "John", [ entry "last_name": "Smith", [ ] ] ] ], [ ] ]

Do Push Stack 48 0
result of dumping [ Python object: [ entry "__class_name__": "Person", [ entry "first_name": "John", [ entry "last_name": "Smith", [ entry "age": 25, [ ] ] ] ] ], [ ] ] to [ ] = [ Python object: [ entry "__class_name__": "Person", [ entry "first_name": "John", [ entry "last_name": "Smith", [ entry "age": 25, [ ] ] ] ] ], [ ] ]

Do Push Stack 20 0
result of dumping [ [2, 4, 6, 8], [ ] ] to [ ] = [ [2, 4, 6, 8], [ ] ]

Do Push Stack 26 0
result of dumping [ [2, 4, 8, 10], [ ] ] to [ ] = [ [2, 4, 8, 10], [ ] ]

Do Push Stack 26 1
result of dumping [ 8, [ 10, [ ] ] ] to [ 4, [ 2, [ ] ] ] = [ 10, [ 8, [ 4, [ 2, [ ] ] ] ] ]

Do Push Stack 26 0
result of dumping [ [2, 9, 6], [ ] ] to [ ] = [ [2, 9, 6], [ ] ]

Do Push Stack 26 1
result of dumping [ 9, [ 2, [ ] ] ] to [ 6, [ ] ] = [ 2, [ 9, [ 6, [ ] ] ] ]

Double Transitive Property Less
if the following are true:
  • a < b
  • a = x
  • b = y

then x < y


Double Transitive Property Less 2
if the following are true:
  • a < b
  • x = a
  • y = b

then x < y


Reverse One Element List
reverse of [ x, [ ] ] = [ x, [ ] ]

Reverse List Two Example
reverse of [ x, [ y, [ ] ] ] = [ y, [ x, [ ] ] ]

Reverse List Example 5
reverse of [ 1, [ 2, [ 3, [ 4, [ ] ] ] ] ] = [ 4, [ 3, [ 2, [ 1, [ ] ] ] ] ]

Minimum Example
minimum value of stack [ 3, [ 2, [ 1, [ ] ] ] ] = 1

Find Number One Element Example
index of value x in [ x, [ ] ] = 0

Find Value Example
index of value 1 in [ 3, [ 2, [ 1, [ ] ] ] ] = 2

Minimum Index Example
index of the mininum value in stack [ 3, [ 2, [ 1, [ ] ] ] ] = 2

Pop Index One Element Example
remaining elements after [ x, [ ] ] is popped at index 0 = [ ]

Pop At Index Induction Example
remaining elements after [ 3, [ 2, [ 1, [ ] ] ] ] is popped at index 2 and visited stack is [ ] = [ 3, [ 2, [ ] ] ]

Pop At Index Example
remaining elements after [ 3, [ 2, [ 1, [ ] ] ] ] is popped at index 2 = [ 3, [ 2, [ ] ] ]

Maximum Example
maximum value in stack [ 2, [ 1, [ ] ] ] = 2

Maximum Example 2
maximum value in stack [ 3, [ 2, [ 1, [ ] ] ] ] = 3

Find Number Example 2
index of value 3 in [ 3, [ 2, [ 1, [ ] ] ] ] = 0

Maximum Index One Element Example
index of the maximum value in stack [ x, [ ] ] = 0

Maximum Index Example
index of the maximum value in stack [ 3, [ 2, [ 1, [ ] ] ] ] = 0

Push Stack Example 2
result of dumping [ 2, [ 1, [ ] ] ] to [ ] = [ 1, [ 2, [ ] ] ]

Pop Index Result Example 2
remaining elements after [ 3, [ 2, [ 1, [ ] ] ] ] is popped at index 0 and visited stack is [ ] = [ 2, [ 1, [ ] ] ]

Pop Index Example 2
remaining elements after [ 3, [ 2, [ 1, [ ] ] ] ] is popped at index 0 = [ 2, [ 1, [ ] ] ]

Find Number Example 3
index of value 2 in [ 2, [ 1, [ ] ] ] = 0

Maximum Index Example 2
index of the maximum value in stack [ 2, [ 1, [ ] ] ] = 0

Pop Index Result Example 3
remaining elements after [ 2, [ 1, [ ] ] ] is popped at index 0 and visited stack is [ ] = [ 1, [ ] ]

Pop Index Example 3
remaining elements after [ 2, [ 1, [ ] ] ] is popped at index 0 = [ 1, [ ] ]

Sort Example
result of sorting [ 3, [ 2, [ 1, [ ] ] ] ] = [ 1, [ 2, [ 3, [ ] ] ] ]

Proof: A Program that Computes Fibonacci Numbers
if the following are true:
  • the PC at time 0 = 0
  • instruction #0 is addi dst=1 src=0 imm=0
  • instruction #1 is addi dst=2 src=0 imm=1
  • instruction #2 is addi dst=4 src=0 imm=0
  • instruction #3 is addi dst=5 src=0 imm=4
  • instruction #4 is add dst=3 src1=1 src2=2
  • instruction #5 is addi dst=1 src=2 imm=0
  • instruction #6 is addi dst=2 src=3 imm=0
  • instruction #7 is addi dst=4 src=4 imm=1
  • instruction #8 is beq left=4 right=5 imm=1
  • instruction #9 is jump imm=4

then value of cell 3 at time 25 = 5


Commutative Property Variation 1
if a = b + c, then a = c + b

Commutative Property Example 2
if a + b = c, then b + a = c

Substitution 2
if the following are true:
  • a = b + c
  • c = d

then a = b + d


Substitution 3
if the following are true:
  • a = b + c
  • d = c

then a = b + d


Substitution 4
if a = b, then (ac) + d = (bc) + d

Add Negative B
if a = b, then a + (b ⋅ (-1)) = 0

Add Term to Both Sides
if a = b, then c + a = c + b

Add Term to Both Sides 2
if a = b, then c + b = c + a

Add Term to Both Sides 3
if a = b, then b + c = a + c

Equality Example
if the following are true:
  • a = b
  • c = d

then a + c = b + d


Add Terms Twice
if x = y, then (a + x) + c = (a + y) + c

Add Substitute Term
if the following are true:
  • x = y
  • (a + x) + c = f

then (a + y) + c = f


Subtract Same Sides
if the following are true:
  • a = b
  • c = d

then a - c = b - d


Subtract From Both Sides
if a = b, then b - c = a - c

Subtract From Both Sides Mirror
if a = b, then a - c = b - c

Substitute
if the following are true:
  • a = b
  • f = b - c

then f = a - c


Substitute Two Terms
if the following are true:
  • a = b
  • c = d
  • f = a - c

then f = b - d


Multiply And Subtract Each Side
if a = b, then (ac) - d = (bc) - d

Multiplicative Property of Equality Variation 2
if a = b, then cb = ca

Multiplicative Property of Equality Variation 1
if a = b, then ca = cb

Substitution 11
if the following are true:
  • a = bc
  • b = d

then a = dc


Substitution 12
if the following are true:
  • a = bc
  • c = d

then a = bd


Substitution 13
if the following are true:
  • a = x
  • b = xy

then b = ay


Substitution 14
if the following are true:
  • x = a
  • xy = b

then ay = b


Substitution in Product
if the following are true:
  • ab = c
  • b = d

then ad = c


Division Property of Equality
if a = b, then a / c = b / c

Multiply Substitute Two Terms
if the following are true:
  • a = x
  • c = y

then (a + c) / m = (x + y) / m


Multiply Substitute Two Terms 2
if the following are true:
  • a = x
  • c = y
  • s = (a + c) / m

then s = (x + y) / m


Subtract Both Sides
if a = b + c, then a + (c ⋅ (-1)) = b

Subtract Both Sides 2
if a = b + c, then a + (b ⋅ (-1)) = c

Substitution 5
if the following are true:
  • a = b + c
  • a = d

then d = b + c


Substitution 6
if the following are true:
  • a = b + c
  • b = d

then a = d + c


Substitution 7
if the following are true:
  • a = b + c
  • d = b

then a = d + c


Subtract Number
if a = 360 + (180 ⋅ (-1)), then a = 180

Subtraction Example 2
if y = 180 + (90 ⋅ (-1)), then y = 90


Pages: 189 190 191 ... 193