Proofs
A proof is a series of claims that lead to a conclusion. Some proofs are conditional, which means that the claims can only be made under certain conditions. Click on a statement to see the proof
compare bit stack [ 1, [ ] ] and bit stack [ 0, [ ] ] = [ 0, [ 1, [ ] ] ]
compare bit stack [ 0, [ 1, [ ] ] ] and bit stack [ 1, [ 1, [ ] ] ] = [ 0, [ 0, [ ] ] ]
compare bit stack [ 1, [ 0, [ 1, [ ] ] ] ] and bit stack [ 0, [ 1, [ 1, [ ] ] ] ] = [ 0, [ 0, [ ] ] ]
[ 0, [ ] ] is less than [ 1, [ ] ]
[ 1, [ ] ] is greater than [ 0, [ ] ]
[ 0, [ 1, [ ] ] ] is greater than [ 0, [ 0, [ ] ] ]
[ 1, [ 1, [ ] ] ] is greater than [ 0, [ 0, [ ] ] ]
[ 1, [ 0, [ 1, [ ] ] ] ] is less than [ 0, [ 1, [ 1, [ ] ] ] ]
minimum value of stack [ [ 0, [ ] ], [ [ 1, [ ] ], [ ] ] ] = [ 0, [ ] ]
minimum value of stack [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] = [ 0, [ ] ]
minimum value of stack [ [ 1, [ 1, [ ] ] ], [ [ 0, [ 1, [ ] ] ], [ [ 0, [ 0, [ ] ] ], [ ] ] ] ] = [ 0, [ 0, [ ] ] ]
[0,[]] = [0,[]]
bit [ 0, [ 1, [ ] ] ] minus bit 1 = [ 1, [ 0, [ ] ] ]
result of dumping [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] to [ [ 0, [ ] ], [ ] ] = [ [ 0, [ ] ], [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] ]
remaining elements after [ [ 0, [ ] ], [ ] ] is popped at index [ 0, [ ] ] = [ ]
remaining elements after [ [ x, [ ] ], [ ] ] is popped at index [ 0, [ ] ] = [ ]
remaining elements after [ [ 0, [ ] ], [ [ 1, [ ] ], [ ] ] ] is popped at index [ 1, [ ] ] and visited stack is [ ] = [ [ 0, [ ] ], [ ] ]
remaining elements after [ [ 0, [ ] ], [ [ 1, [ ] ], [ ] ] ] is popped at index [ 1, [ ] ] = [ [ 0, [ ] ], [ ] ]
remaining elements after [ x, [ y, [ ] ] ] is popped at index [ 1, [ ] ] and visited stack is [ ] = [ x, [ ] ]
remaining elements after [ x, [ y, [ ] ] ] is popped at index [ 1, [ ] ] = [ x, [ ] ]
index of value [ 0, [ ] ] in [ [ 0, [ ] ], [ ] ] = [ 0, [ ] ]
index of value [ 0, [ ] ] in [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] = [ 1, [ ] ]
index of the mininum value in stack [ x, [ ] ] = [ 0, [ ] ]
index of the mininum value in stack [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] = [ 1, [ ] ]
result of sorting [ [ 0, [ ] ], [ ] ] = [ [ 0, [ ] ], [ ] ]
result of sorting [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] = [ [ 0, [ ] ], [ [ 1, [ ] ], [ ] ] ]
result of dumping [
{"ES": "Spain", "MX": "Mexico"}
, [ ] ] to [ ] = [ {"ES": "Spain", "MX": "Mexico"}
, [ ] ]result of dumping [ Python object: [ entry "__class_name__": "Dog", [ entry "x": 0, [ ] ] ], [ ] ] to [ ] = [ Python object: [ entry "__class_name__": "Dog", [ entry "x": 0, [ ] ] ], [ ] ]
result of dumping [ Python object: [ entry "__class_name__": "Dog", [ entry "x": 0, [ entry "y": 0, [ ] ] ] ], [ ] ] to [ ] = [ Python object: [ entry "__class_name__": "Dog", [ entry "x": 0, [ entry "y": 0, [ ] ] ] ], [ ] ]
result of dumping [ Python object: [ entry "__class_name__": "Dog", [ entry "x": 5, [ entry "y": 0, [ ] ] ] ], [ ] ] to [ ] = [ Python object: [ entry "__class_name__": "Dog", [ entry "x": 5, [ entry "y": 0, [ ] ] ] ], [ ] ]
result of dumping [ Python object: [ entry "__class_name__": "Dog", [ entry "x": 5, [ entry "y": 5, [ ] ] ] ], [ ] ] to [ ] = [ Python object: [ entry "__class_name__": "Dog", [ entry "x": 5, [ entry "y": 5, [ ] ] ] ], [ ] ]
result of dumping [ Python object: [ entry "__class_name__": "Person", [ entry "first_name": "John", [ ] ] ], [ ] ] to [ ] = [ Python object: [ entry "__class_name__": "Person", [ entry "first_name": "John", [ ] ] ], [ ] ]
result of dumping [ Python object: [ entry "__class_name__": "Person", [ entry "first_name": "John", [ entry "last_name": "Smith", [ ] ] ] ], [ ] ] to [ ] = [ Python object: [ entry "__class_name__": "Person", [ entry "first_name": "John", [ entry "last_name": "Smith", [ ] ] ] ], [ ] ]
result of dumping [ Python object: [ entry "__class_name__": "Person", [ entry "first_name": "John", [ entry "last_name": "Smith", [ entry "age": 25, [ ] ] ] ] ], [ ] ] to [ ] = [ Python object: [ entry "__class_name__": "Person", [ entry "first_name": "John", [ entry "last_name": "Smith", [ entry "age": 25, [ ] ] ] ] ], [ ] ]
result of dumping [
[2, 4, 6, 8]
, [ ] ] to [ ] = [ [2, 4, 6, 8]
, [ ] ]result of dumping [
[2, 4, 8, 10]
, [ ] ] to [ ] = [ [2, 4, 8, 10]
, [ ] ]result of dumping [ 8, [ 10, [ ] ] ] to [ 4, [ 2, [ ] ] ] = [ 10, [ 8, [ 4, [ 2, [ ] ] ] ] ]
result of dumping [
[2, 9, 6]
, [ ] ] to [ ] = [ [2, 9, 6]
, [ ] ]result of dumping [ 9, [ 2, [ ] ] ] to [ 6, [ ] ] = [ 2, [ 9, [ 6, [ ] ] ] ]
if the following are true:
- a < b
- a = x
- b = y
then x < y
if the following are true:
- a < b
- x = a
- y = b
then x < y
reverse of [ x, [ ] ] = [ x, [ ] ]
reverse of [ x, [ y, [ ] ] ] = [ y, [ x, [ ] ] ]
reverse of [ 1, [ 2, [ 3, [ 4, [ ] ] ] ] ] = [ 4, [ 3, [ 2, [ 1, [ ] ] ] ] ]
minimum value of stack [ 3, [ 2, [ 1, [ ] ] ] ] = 1
index of value x in [ x, [ ] ] = 0
index of value 1 in [ 3, [ 2, [ 1, [ ] ] ] ] = 2
index of the mininum value in stack [ 3, [ 2, [ 1, [ ] ] ] ] = 2
remaining elements after [ x, [ ] ] is popped at index 0 = [ ]
remaining elements after [ 3, [ 2, [ 1, [ ] ] ] ] is popped at index 2 and visited stack is [ ] = [ 3, [ 2, [ ] ] ]
remaining elements after [ 3, [ 2, [ 1, [ ] ] ] ] is popped at index 2 = [ 3, [ 2, [ ] ] ]
maximum value in stack [ 2, [ 1, [ ] ] ] = 2
maximum value in stack [ 3, [ 2, [ 1, [ ] ] ] ] = 3
index of value 3 in [ 3, [ 2, [ 1, [ ] ] ] ] = 0
index of the maximum value in stack [ x, [ ] ] = 0
index of the maximum value in stack [ 3, [ 2, [ 1, [ ] ] ] ] = 0
result of dumping [ 2, [ 1, [ ] ] ] to [ ] = [ 1, [ 2, [ ] ] ]
remaining elements after [ 3, [ 2, [ 1, [ ] ] ] ] is popped at index 0 and visited stack is [ ] = [ 2, [ 1, [ ] ] ]
remaining elements after [ 3, [ 2, [ 1, [ ] ] ] ] is popped at index 0 = [ 2, [ 1, [ ] ] ]
index of value 2 in [ 2, [ 1, [ ] ] ] = 0
index of the maximum value in stack [ 2, [ 1, [ ] ] ] = 0
remaining elements after [ 2, [ 1, [ ] ] ] is popped at index 0 and visited stack is [ ] = [ 1, [ ] ]
remaining elements after [ 2, [ 1, [ ] ] ] is popped at index 0 = [ 1, [ ] ]
result of sorting [ 3, [ 2, [ 1, [ ] ] ] ] = [ 1, [ 2, [ 3, [ ] ] ] ]
if the following are true:
- the PC at time 0 = 0
- instruction #0 is
addi dst=1 src=0 imm=0
- instruction #1 is
addi dst=2 src=0 imm=1
- instruction #2 is
addi dst=4 src=0 imm=0
- instruction #3 is
addi dst=5 src=0 imm=4
- instruction #4 is
add dst=3 src1=1 src2=2
- instruction #5 is
addi dst=1 src=2 imm=0
- instruction #6 is
addi dst=2 src=3 imm=0
- instruction #7 is
addi dst=4 src=4 imm=1
- instruction #8 is
beq left=4 right=5 imm=1
- instruction #9 is
jump imm=4
then value of cell 3 at time 25 = 5
if a = b + c, then a = c + b
if a + b = c, then b + a = c
if the following are true:
- a = b + c
- c = d
then a = b + d
if the following are true:
- a = b + c
- d = c
then a = b + d
if a = b, then (a ⋅ c) + d = (b ⋅ c) + d
if a = b, then a + (b ⋅ (-1)) = 0
if a = b, then c + a = c + b
if a = b, then c + b = c + a
if a = b, then b + c = a + c
if the following are true:
- a = b
- c = d
then a + c = b + d
if x = y, then (a + x) + c = (a + y) + c
if the following are true:
- x = y
- (a + x) + c = f
then (a + y) + c = f
if the following are true:
- a = b
- c = d
then a - c = b - d
if a = b, then b - c = a - c
if a = b, then a - c = b - c
if the following are true:
- a = b
- f = b - c
then f = a - c
if the following are true:
- a = b
- c = d
- f = a - c
then f = b - d
if a = b, then (a ⋅ c) - d = (b ⋅ c) - d
if a = b, then c ⋅ b = c ⋅ a
if a = b, then c ⋅ a = c ⋅ b
if the following are true:
- a = b ⋅ c
- b = d
then a = d ⋅ c
if the following are true:
- a = b ⋅ c
- c = d
then a = b ⋅ d
if the following are true:
- a = x
- b = x ⋅ y
then b = a ⋅ y
if the following are true:
- x = a
- x ⋅ y = b
then a ⋅ y = b
if the following are true:
- a ⋅ b = c
- b = d
then a ⋅ d = c
if a = b, then a / c = b / c
if the following are true:
- a = x
- c = y
then (a + c) / m = (x + y) / m
if the following are true:
- a = x
- c = y
- s = (a + c) / m
then s = (x + y) / m
if a = b + c, then a + (c ⋅ (-1)) = b
if a = b + c, then a + (b ⋅ (-1)) = c
if the following are true:
- a = b + c
- a = d
then d = b + c
if the following are true:
- a = b + c
- b = d
then a = d + c
if the following are true:
- a = b + c
- d = b
then a = d + c
if a = 360 + (180 ⋅ (-1)), then a = 180
if y = 180 + (90 ⋅ (-1)), then y = 90