Proof: Substitute First Term
Let's prove the following theorem:
if the following are true:
    
    
    
    - (a + b) + c = d
- a = e
then (e + b) + c = d
Proof:
  
      
      Given
      
    
    
      
  
  
| 1 | (a + b) + c = d | 
|---|---|
| 2 | a = e | 
| # | Claim | Reason | 
|---|---|---|
| 1 | (a + b) + c = a + (b + c) | (a + b) + c = a + (b + c) | 
| 2 | (b + c) + a = a + (b + c) | (b + c) + a = a + (b + c) | 
| 3 | a + (b + c) = (a + b) + c | if (a + b) + c = a + (b + c), then a + (b + c) = (a + b) + c | 
| 4 | (b + c) + a = (a + b) + c | if (b + c) + a = a + (b + c) and a + (b + c) = (a + b) + c, then (b + c) + a = (a + b) + c | 
| 5 | (b + c) + a = d | if (b + c) + a = (a + b) + c and (a + b) + c = d, then (b + c) + a = d | 
| 6 | (b + c) + e = d | if (b + c) + a = d and a = e, then (b + c) + e = d | 
| 7 | e + (b + c) = d | if (b + c) + e = d, then e + (b + c) = d | 
| 8 | (e + b) + c = e + (b + c) | (e + b) + c = e + (b + c) | 
| 9 | (e + b) + c = d | if (e + b) + c = e + (b + c) and e + (b + c) = d, then (e + b) + c = d | 
Comments
Please log in to add comments