Proof: Triangles Sum to 180
Let's prove the following theorem:
((m∠YWX) + (m∠WXY)) + (m∠XYW) = 180
    
    
Proof:
  
  
  Assumptions
    
    
      
  
| 1 | ZX || WY | 
|---|---|
| 2 | m∠ZXP = 180 | 
| # | Claim | Reason | 
|---|---|---|
| 1 | m∠ZXW = m∠XWY | if ZX || WY, then m∠ZXW = m∠XWY | 
| 2 | XP || WY | if ZX || WY and m∠ZXP = 180, then XP || WY | 
| 3 | PX || YW | if XP || WY, then PX || YW | 
| 4 | m∠PXY = m∠XYW | if PX || YW, then m∠PXY = m∠XYW | 
| 5 | point W lies in interior of ∠ZXY | if ZX || WY, then point W lies in interior of ∠ZXY | 
| 6 | m∠ZXY = (m∠ZXW) + (m∠WXY) | if point W lies in interior of ∠ZXY, then m∠ZXY = (m∠ZXW) + (m∠WXY) | 
| 7 | m∠ZXP = (m∠ZXY) + (m∠YXP) | if m∠ZXP = 180, then m∠ZXP = (m∠ZXY) + (m∠YXP) | 
| 8 | (m∠ZXY) + (m∠YXP) = 180 | if m∠ZXP = (m∠ZXY) + (m∠YXP) and m∠ZXP = 180, then (m∠ZXY) + (m∠YXP) = 180 | 
| 9 | ((m∠ZXW) + (m∠WXY)) + (m∠YXP) = 180 | if (m∠ZXY) + (m∠YXP) = 180 and m∠ZXY = (m∠ZXW) + (m∠WXY), then ((m∠ZXW) + (m∠WXY)) + (m∠YXP) = 180 | 
| 10 | m∠YXP = m∠XYW | if m∠PXY = m∠XYW, then m∠YXP = m∠XYW | 
| 11 | ((m∠ZXW) + (m∠WXY)) + (m∠XYW) = 180 | if ((m∠ZXW) + (m∠WXY)) + (m∠YXP) = 180 and m∠YXP = m∠XYW, then ((m∠ZXW) + (m∠WXY)) + (m∠XYW) = 180 | 
| 12 | (m∠ZXW) + (m∠WXY) = (m∠XWY) + (m∠WXY) | if m∠ZXW = m∠XWY, then (m∠ZXW) + (m∠WXY) = (m∠XWY) + (m∠WXY) | 
| 13 | ((m∠XWY) + (m∠WXY)) + (m∠XYW) = 180 | if ((m∠ZXW) + (m∠WXY)) + (m∠XYW) = 180 and (m∠ZXW) + (m∠WXY) = (m∠XWY) + (m∠WXY), then ((m∠XWY) + (m∠WXY)) + (m∠XYW) = 180 | 
| 14 | m∠XWY = m∠YWX | m∠XWY = m∠YWX | 
| 15 | ((m∠YWX) + (m∠WXY)) + (m∠XYW) = 180 | if ((m∠XWY) + (m∠WXY)) + (m∠XYW) = 180 and m∠XWY = m∠YWX, then ((m∠YWX) + (m∠WXY)) + (m∠XYW) = 180 | 
Comments
Please log in to add comments