Proof: Collinear Angles Property 10
Let's prove the following theorem:
if m∠ABC = 180, then m∠XCB = m∠XCA
    
    
Proof:
  
      
      Given
      
    
    
      
  
  
| 1 | m∠ABC = 180 | 
|---|
| # | Claim | Reason | 
|---|---|---|
| 1 | m∠BCX = m∠ACX | if m∠ABC = 180, then m∠BCX = m∠ACX | 
| 2 | m∠BCX = m∠XCB | m∠BCX = m∠XCB | 
| 3 | m∠ACX = m∠XCA | m∠ACX = m∠XCA | 
| 4 | m∠XCB = m∠ACX | if m∠BCX = m∠XCB and m∠BCX = m∠ACX, then m∠XCB = m∠ACX | 
| 5 | m∠XCB = m∠XCA | if m∠XCB = m∠ACX and m∠ACX = m∠XCA, then m∠XCB = m∠XCA | 
Comments
Please log in to add comments