Proof: Subtract Both Sides 2
Let's prove the following theorem:
if a = b + c, then a + (b ⋅ (-1)) = c
    
    
    
    Proof:
  
      
      Given
      
    
    
      
  
  
| 1 | a = b + c | 
|---|
| # | Claim | Reason | 
|---|---|---|
| 1 | b + c = c + b | b + c = c + b | 
| 2 | a = c + b | if a = b + c and b + c = c + b, then a = c + b | 
| 3 | a + (b ⋅ (-1)) = (c + b) + (b ⋅ (-1)) | if a = c + b, then a + (b ⋅ (-1)) = (c + b) + (b ⋅ (-1)) | 
| 4 | (c + b) + (b ⋅ (-1)) = c + (b + (b ⋅ (-1))) | (c + b) + (b ⋅ (-1)) = c + (b + (b ⋅ (-1))) | 
| 5 | a + (b ⋅ (-1)) = c + (b + (b ⋅ (-1))) | if a + (b ⋅ (-1)) = (c + b) + (b ⋅ (-1)) and (c + b) + (b ⋅ (-1)) = c + (b + (b ⋅ (-1))), then a + (b ⋅ (-1)) = c + (b + (b ⋅ (-1))) | 
| 6 | b + (b ⋅ (-1)) = 0 | b + (b ⋅ (-1)) = 0 | 
| 7 | c + (b + (b ⋅ (-1))) = c + 0 | if b + (b ⋅ (-1)) = 0, then c + (b + (b ⋅ (-1))) = c + 0 | 
| 8 | a + (b ⋅ (-1)) = c + 0 | if a + (b ⋅ (-1)) = c + (b + (b ⋅ (-1))) and c + (b + (b ⋅ (-1))) = c + 0, then a + (b ⋅ (-1)) = c + 0 | 
| 9 | c + 0 = c | c + 0 = c | 
| 10 | a + (b ⋅ (-1)) = c | if a + (b ⋅ (-1)) = c + 0 and c + 0 = c, then a + (b ⋅ (-1)) = c | 
Comments
Please log in to add comments