Proof: Reorder Terms 3
Let's prove the following theorem:
if ((a + b) + c) + e = ((a + b) + g) + h, then ((a + b) + c) + e = ((a + g) + b) + h
Proof:
Given
| 1 | ((a + b) + c) + e = ((a + b) + g) + h |
|---|
| # | Claim | Reason |
|---|---|---|
| 1 | ((a + b) + g) + h = ((a + g) + b) + h | ((a + b) + g) + h = ((a + g) + b) + h |
| 2 | ((a + b) + c) + e = ((a + g) + b) + h | if ((a + b) + c) + e = ((a + b) + g) + h and ((a + b) + g) + h = ((a + g) + b) + h, then ((a + b) + c) + e = ((a + g) + b) + h |
Comments
Please log in to add comments