Proof: If Equiangular Then Rectangle
Let's prove the following theorem:
if m∠WXY = m∠XYZ and m∠XYZ = m∠YZW and m∠YZW = m∠ZWX, then WXYZ is a rectangle
Proof:
Proof Table
# | Claim | Reason |
---|---|---|
1 | m∠WXY = m∠YZW | if m∠WXY = m∠XYZ and m∠XYZ = m∠YZW, then m∠WXY = m∠YZW |
2 | m∠XYZ = m∠ZWX | if m∠XYZ = m∠YZW and m∠YZW = m∠ZWX, then m∠XYZ = m∠ZWX |
3 | WXYZ is a parallelogram | if m∠XYZ = m∠ZWX and m∠WXY = m∠YZW, then WXYZ is a parallelogram |
4 | quadrilateral WXYZ is convex | if m∠WXY = m∠YZW and m∠XYZ = m∠ZWX, then quadrilateral WXYZ is convex |
5 | (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠ZWX) = 360 | if quadrilateral WXYZ is convex, then (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠ZWX) = 360 |
6 | m∠WXY = m∠ZWX | if m∠WXY = m∠XYZ and m∠XYZ = m∠ZWX, then m∠WXY = m∠ZWX |
7 | (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠WXY) = 360 | if (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠ZWX) = 360 and m∠WXY = m∠ZWX, then (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠WXY) = 360 |
8 | m∠YZW = m∠WXY | if m∠WXY = m∠YZW, then m∠YZW = m∠WXY |
9 | (((m∠WXY) + (m∠XYZ)) + (m∠WXY)) + (m∠WXY) = 360 | if m∠YZW = m∠WXY and (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠WXY) = 360, then (((m∠WXY) + (m∠XYZ)) + (m∠WXY)) + (m∠WXY) = 360 |
10 | (m∠WXY) + (m∠XYZ) = (m∠WXY) + (m∠WXY) | if m∠WXY = m∠XYZ, then (m∠WXY) + (m∠XYZ) = (m∠WXY) + (m∠WXY) |
11 | (((m∠WXY) + (m∠WXY)) + (m∠WXY)) + (m∠WXY) = 360 | if (((m∠WXY) + (m∠XYZ)) + (m∠WXY)) + (m∠WXY) = 360 and (m∠WXY) + (m∠XYZ) = (m∠WXY) + (m∠WXY), then (((m∠WXY) + (m∠WXY)) + (m∠WXY)) + (m∠WXY) = 360 |
12 | m∠WXY = 90 | if (((m∠WXY) + (m∠WXY)) + (m∠WXY)) + (m∠WXY) = 360, then m∠WXY = 90 |
13 | ∠WXY is a right angle | if m∠WXY = 90, then ∠WXY is a right angle |
14 | WXYZ is a rectangle | if WXYZ is a parallelogram and ∠WXY is a right angle, then WXYZ is a rectangle |
Comments
Please log in to add comments