Transitive Property of Equality Variation 2
Angle Symmetry Example 2
Distance Property 2
Distance Property 1
Collinear Then 180
Subtract Both Sides
Add Term to Both Sides 6
Subtract Both Sides 2
Add Term to Both Sides 7
Transitive Property of Equality Variation 1
Vertical Angles
Angle Addition Theorem
Collinear Angles Property 9
Collinear Angles B
Exterior Angle
Exterior Angle B
Collinear Angles Property 10
Collinear Angles Property 3
Collinear Angles Property 3 B
Collinear Angles Property 3 C
alternate interior angles then parallel
ParallelThenAIA
Parallelthenaiashort
Commutative Property Example 2
Commutative Property Variation 1
Substitution 2
Substitution 8
Angle Symmetry B
Substitution Example 10
Substitute First Term
Triangles Sum to 180
Substitute 2
Associative
Add 6 Numbers
Add Associative 2
Rearrange Sum 6
Rearrange Sum 6 2
Reorder Terms 2
Add Term to Both Sides 2
Substitution 6
Simplify Rearrange Sum 6
Swap B And C
Reorder Terms 3
Sum of Angles in Quadrilateral is 360
Multiplicative Identity 2
Distributive Property 4
Multiplicative Property of Equality Variation 1
Addition Theorem
Multiply 2
Divide Both Sides
Multiplicative Property of Equality Variation 2
Transitive Property of Equality Variation 3
Division is Commutative
Associative Property
Divide Each Side
Reorder Terms 6
Reorder Terms 7
Converse of the Supplementary Angles Theorem
Aia Then Parallel 3
Interior Supplementary Then Parallel
If Angles Congruent Then Parallelogram
Add Terms Twice
Add Substitute Term
Add Three
Add Four
Reduce Addition
If Equiangular Then Rectangle

Proof: If Equiangular Then Rectangle

Let's prove the following theorem:

if m∠WXY = m∠XYZ and m∠XYZ = m∠YZW and m∠YZW = m∠ZWX, then WXYZ is a rectangle

Z W X Y

Proof:

View as a tree | View dependent proofs | Try proving it

Given
1 m∠WXY = m∠XYZ
2 m∠XYZ = m∠YZW
3 m∠YZW = m∠ZWX
Proof Table
# Claim Reason
1 m∠WXY = m∠YZW if m∠WXY = m∠XYZ and m∠XYZ = m∠YZW, then m∠WXY = m∠YZW
2 m∠XYZ = m∠ZWX if m∠XYZ = m∠YZW and m∠YZW = m∠ZWX, then m∠XYZ = m∠ZWX
3 WXYZ is a parallelogram if m∠XYZ = m∠ZWX and m∠WXY = m∠YZW, then WXYZ is a parallelogram
4 quadrilateral WXYZ is convex if m∠WXY = m∠YZW and m∠XYZ = m∠ZWX, then quadrilateral WXYZ is convex
5 (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠ZWX) = 360 if quadrilateral WXYZ is convex, then (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠ZWX) = 360
6 m∠WXY = m∠ZWX if m∠WXY = m∠XYZ and m∠XYZ = m∠ZWX, then m∠WXY = m∠ZWX
7 (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠WXY) = 360 if (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠ZWX) = 360 and m∠WXY = m∠ZWX, then (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠WXY) = 360
8 m∠YZW = m∠WXY if m∠WXY = m∠YZW, then m∠YZW = m∠WXY
9 (((m∠WXY) + (m∠XYZ)) + (m∠WXY)) + (m∠WXY) = 360 if m∠YZW = m∠WXY and (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠WXY) = 360, then (((m∠WXY) + (m∠XYZ)) + (m∠WXY)) + (m∠WXY) = 360
10 (m∠WXY) + (m∠XYZ) = (m∠WXY) + (m∠WXY) if m∠WXY = m∠XYZ, then (m∠WXY) + (m∠XYZ) = (m∠WXY) + (m∠WXY)
11 (((m∠WXY) + (m∠WXY)) + (m∠WXY)) + (m∠WXY) = 360 if (((m∠WXY) + (m∠XYZ)) + (m∠WXY)) + (m∠WXY) = 360 and (m∠WXY) + (m∠XYZ) = (m∠WXY) + (m∠WXY), then (((m∠WXY) + (m∠WXY)) + (m∠WXY)) + (m∠WXY) = 360
12 m∠WXY = 90 if (((m∠WXY) + (m∠WXY)) + (m∠WXY)) + (m∠WXY) = 360, then m∠WXY = 90
13 WXY is a right angle if m∠WXY = 90, then ∠WXY is a right angle
14 WXYZ is a rectangle if WXYZ is a parallelogram and ∠WXY is a right angle, then WXYZ is a rectangle
Previous Lesson

Comments

Please log in to add comments