Certificate Programs
Courses
Building Blocks
Types
Functions
Properties
Conditional Properties
Proofs
Why Logicwalk?
Log In
Get Started
Transitive Property of Equality Variation 2
Angle Symmetry Example 2
Distance Property 2
Distance Property 1
Collinear Then 180
Subtract Both Sides
Add Term to Both Sides 6
Subtract Both Sides 2
Add Term to Both Sides 7
Transitive Property of Equality Variation 1
Vertical Angles
Angle Addition Theorem
Collinear Angles Property 9
Collinear Angles B
Exterior Angle
Exterior Angle B
Collinear Angles Property 10
Collinear Angles Property 3
Collinear Angles Property 3 B
Collinear Angles Property 3 C
alternate interior angles then parallel
ParallelThenAIA
Parallelthenaiashort
Commutative Property Example 2
Commutative Property Variation 1
Substitution 2
Substitution 8
Angle Symmetry B
Substitution Example 10
Substitute First Term
Triangles Sum to 180
Substitute 2
Associative
Add 6 Numbers
Add Associative 2
Rearrange Sum 6
Rearrange Sum 6 2
Reorder Terms 2
Add Term to Both Sides 2
Substitution 6
Simplify Rearrange Sum 6
Swap B And C
Reorder Terms 3
Sum of Angles in Quadrilateral is 360
Multiplicative Identity 2
Distributive Property 4
Multiplicative Property of Equality Variation 1
Addition Theorem
Multiply 2
Divide Both Sides
Multiplicative Property of Equality Variation 2
Transitive Property of Equality Variation 3
Division is Commutative
Associative Property
Divide Each Side
Reorder Terms 6
Reorder Terms 7
Converse of the Supplementary Angles Theorem
Aia Then Parallel 3
Interior Supplementary Then Parallel
If Angles Congruent Then Parallelogram
Add Terms Twice
Add Substitute Term
Add Three
Add Four
Reduce Addition
If Equiangular Then Rectangle
Proof: Angle Symmetry Example 2
Let's prove the following theorem:
if m∠
A
B
C
=
x
, then m∠
C
B
A
=
x
A
B
C
x
Proof:
View as a tree
|
View dependent proofs
|
Try proving it
Given
1
m∠
A
B
C
=
x
Proof Table
#
Claim
Reason
1
m∠
A
B
C
=
m∠
C
B
A
m∠
A
B
C
=
m∠
C
B
A
(Angle Symmetry Property)
2
m∠
C
B
A
=
x
if
m∠
A
B
C
=
m∠
C
B
A
and
m∠
A
B
C
=
x
, then
m∠
C
B
A
=
x
(Transitive Property of Equality Variation 2)
Previous Lesson
Next Lesson
Comments
Please
log in
to add comments