Proofs

A proof is a series of claims that lead to a conclusion. Some proofs are conditional, which means that the claims can only be made under certain conditions. Click on a statement to see the proof

If Three Sides Ratios Equal Then Similar Triangles
if (distance AB) / (distance XY) = (distance BC) / (distance YZ) and (distance BC) / (distance YZ) = (distance CA) / (distance ZX) and distance AC = distance SZ and ST || XY and m∠XSZ = 180 and m∠YTZ = 180, then △ABC ∼ △XYZ

If Sas Then Similar Triangles
if m∠ABC = m∠XYZ and (distance AB) / (distance XY) = (distance BC) / (distance YZ), then △ABC ∼ △XYZ

Triangle Proportionality Theorem (Converse)
if (distance ZS) / (distance ZX) = (distance ZT) / (distance ZY) and m∠XSZ = 180 and m∠YTZ = 180, then ST || XY

Similar Corresponding Altitudes
if △ABC ∼ △XYZ and ∠BPC is a right angle and ∠YQZ is a right angle and m∠APC = 180 and m∠XQZ = 180, then (distance BP) / (distance YQ) = (distance BC) / (distance YZ)

Similar Corresponding Medians
if △ABC ∼ △XYZ and M is the midpoint of line AC and N is the midpoint of line XZ, then (distance BM) / (distance YN) = (distance BC) / (distance YZ)

Similar Corresponding Bisectors
if △ABC ∼ △XYZ and ray BP bisects ∠ABC and ray YQ bisects ∠XYZ and m∠APC = 180 and m∠XQZ = 180, then (distance BC) / (distance YZ) = (distance BP) / (distance YQ)

Similar Triangles Example 2
if ∠ZXY is a right angle and ∠XPY is a right angle and m∠YPZ = 180, then △PYX ∼ △XYZ

Similar Triangles Example 3
if ∠ZXY is a right angle and ∠XPY is a right angle and m∠YPZ = 180, then △PXZ ∼ △XYZ

Pythagorean Theorem
if ∠ZXY is a right angle, then ((distance XY) ⋅ (distance XY)) + ((distance XZ) ⋅ (distance XZ)) = (distance YZ) ⋅ (distance YZ)

Pythagorean Theorem 2
if ∠CAB is a right angle, then (distance BC) ⋅ (distance BC) = ((distance AB) ⋅ (distance AB)) + ((distance AC) ⋅ (distance AC))

Pythagorean Theorem 3
if ∠CAB is a right angle, then (distance CB) ⋅ (distance CB) = ((distance CA) ⋅ (distance CA)) + ((distance AB) ⋅ (distance AB))

Pythagorean Theorem 4
if ∠ABC is a right angle, then (distance AC) ⋅ (distance AC) = ((distance AB) ⋅ (distance AB)) + ((distance BC) ⋅ (distance BC))

Alternate Interior Angles Theorem
if m∠WSX = 180 and m∠YTZ = 180 and m∠WST = m∠STZ, then WX || YZ

Alternate Interior Angles Theorem 2
if m∠WSX = 180 and m∠YTZ = 180 and m∠WST = m∠STZ, then XW || ZY

Alternate Interior Angles Theorem 3
if m∠WSX = 180 and m∠YTZ = 180 and m∠YTS = m∠TSX, then WX || YZ

Alternate Interior Angles Theorem 4
if m∠WSX = 180 and m∠YTZ = 180 and m∠STZ = m∠TSW, then WX || YZ

Alternate Interior Angles Theorem 4
if m∠WST = m∠STZ, then WS || TZ

Corresponding Angles Then Parallel
if m∠WJI = m∠YKJ and m∠WJX = 180 and m∠YKZ = 180 and m∠IJK = 180, then WX || YZ

Corresponding Angles Then Parallel 2
if m∠WJI = m∠YKJ and m∠WJX = 180 and m∠YKZ = 180 and m∠KJI = 180, then WX || YZ

Corresponding Angles Then Parallel 3
if m∠YKJ = m∠WJI and m∠WJX = 180 and m∠YKZ = 180 and m∠KJI = 180, then YZ || WX

Consecutive Interior Angles Theorem
if ∠WST and ∠YTS are supplementary, then WS || YT

Perpendicular Then Parallel
if WXXS and YZZT and m∠WXG = 180 and m∠YZH = 180 and m∠SXZ = 180 and m∠XZT = 180, then YH || WG

Alternate Interior Angles Theorem (Converse)
if WX || YZ and m∠WSX = 180 and m∠YTZ = 180, then m∠WST = m∠STZ

Parallel Then Aia 2
if WX || YZ and m∠WSX = 180 and m∠YTZ = 180, then m∠XST = m∠STY

Alternate Interior Angles Theorem (Converse) 2
if WS || TZ, then m∠WST = m∠STZ

Alternate Interior Angles Theorem (Converse) 3
if WS || TZ, then m∠WST = m∠ZTS

Alternate Interior Angles Theorem (Converse) 4
if WS || TZ, then m∠TSW = m∠STZ

Alternate Interior Angles Theorem (Converse) 5
if WX || YZ, then m∠ZYX = m∠YXW

Alternate Interior Angles Theorem (Converse) 6
if WS || TZ, then m∠SWZ = m∠WZT

Alternate Interior Angles Theorem (Converse) 7
if WS || TZ, then m∠TZW = m∠SWZ

Alternate Interior Angles Theorem (Converse) 8
if WS || TZ, then m∠SWZ = m∠TZW

Alternate Interior Angles Theorem (Converse) 9
if WX || YZ, then m∠YZW = m∠ZWX

Parallel Then Corresponding
if WX || YZ and m∠WSX = 180 and m∠YTZ = 180 and m∠RST = 180, then m∠WSR = m∠STY

Parallel Then Corresponding 2
if WX || YZ and m∠WSX = 180 and m∠YTZ = 180 and m∠RST = 180, then m∠WSR = m∠YTS

Parallel Then Corresponding Short
if WX || YZ and m∠RXZ = 180, then m∠WXR = m∠YZX

Parallel Then Corresponding Short 2
if WX || YZ and m∠WYR = 180, then m∠ZYR = m∠XWY

Parallel Then Corresponding Short 3
if WX || YZ and m∠ZXR = 180, then m∠YZX = m∠WXR

Parallel Then Corresponding Short 3b
if WX || YZ and m∠ZXR = 180, then m∠YZR = m∠WXR

Parallel Then Corresponding Short 4
if WX || YZ and m∠YWR = 180, then m∠ZYW = m∠XWR

Parallel Then Corresponding Short 4b
if WX || YZ and m∠YWR = 180, then m∠ZYR = m∠XWR

Consecutive Interior Angles Theorem (Converse)
if WX || YZ and m∠WSX = 180 and m∠YTZ = 180, then ∠WST and ∠STY are supplementary

Interior Angles of Parallel Lines
if WX || YZ, then ∠WXZ and ∠XZY are supplementary

Perpendicular to One Then Other
if WX || YZ and m∠WSX = 180 and m∠YTZ = 180 and WSST, then YTTS

Perpendicular to One Then Other Simple
if WS || YT and WSST, then YTTS

Two of Three Lines Parallel
if WX || LM and YZ || LM and m∠WSX = 180 and m∠YTZ = 180 and m∠LRM = 180 and m∠STR = 180, then WX || YZ

Quadrilateral Parallel
if distance XY = distance ZW and XY || WZ, then XW || YZ

Triangles Sum to 180
((m∠YWX) + (m∠WXY)) + (m∠XYW) = 180

Third Angle Theorem
if m∠ABC = m∠XYZ and m∠BCA = m∠YZX, then m∠CAB = m∠ZXY

Acute Angles of Right Triange Comlementary
if △XYZ is a right triangle, then (m∠YZX) + (m∠ZXY) = 90

Acute Angles of Right Isosceles Triangle 45
if △XYZ is a right triangle and distance XY = distance YZ, then m∠YZX = 45

Equilateral Triangle 60
if △XYZ is an equilateral triangle, then m∠XYZ = 60

Equilateral Triangle 60 2
if △XYZ is an equilateral triangle, then m∠ZXY = 60

Sum of Angles in Quadrilateral is 360
if quadrilateral WXYZ is convex, then (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠ZWX) = 360

Exterior Angle Equal to Sum of Nonadjacent
if m∠XYZ = 180, then m∠WYZ = (m∠WXY) + (m∠YWX)

Exterior Angle Equal to Sum of Nonadjacent 2
if m∠XYZ = 180, then (m∠WXY) + (m∠XWY) = m∠WYZ

Triangle And Line Parallel
if distance WY = distance XY and ray YP bisects ∠XYZ and m∠WYZ = 180, then WX || YP

Angle Angle Side Triangle
if m∠BCA = m∠YZX and m∠CAB = m∠ZXY and distance AB = distance XY, then △CAB ≅ △ZXY

Angle Angle Side Triangle 2
if m∠ABC = m∠XYZ and m∠CAB = m∠ZXY and distance AC = distance XZ, then △BAC ≅ △YXZ

Bisector Point Equidistant From Sides
if m∠PXY = 90 and m∠PZY = 90 and ray YP bisects ∠XYZ, then distance PX = distance PZ

Altitudes Isosceles
if distance YX = distance YZ and XTTZ and ZSSX and m∠XSY = 180 and m∠ZTY = 180, then distance ZS = distance XT

Two Angles Equal Then Isosceles
if m∠YXZ = m∠XYZ, then distance ZX = distance ZY

Two Angles Equal Then Isosceles 2
if m∠ZXY = m∠ZYX, then distance ZX = distance ZY

Two Angles Equal Then Isosceles 3
if m∠ZXY = m∠ZYX, then distance XZ = distance YZ

Equiangular Then Equilateral
if m∠ZYX = m∠YZX, then distance XY = distance XZ

Hypothenuse-Leg (HL) Theorem
if ∠ABC is a right angle and ∠XYZ is a right angle and distance AC = distance XZ and distance BC = distance YZ, then △ABC ≅ △XYZ

Bisector Angle
if PXXY and PZZY and distance XP = distance ZP, then m∠PYX = m∠PYZ

Concurrent Angle Bisectors
if ray AS bisects ∠CAB and ray BT bisects ∠ABC and m∠APS = 180 and m∠BPT = 180 and PZZA and PXXA and PXXB and PYYB and PZZC and PYYC, then ray CP bisects ∠BCA

Distance Property 1
if distance AB = x, then distance BA = x

Distance Property 2
if distance AB = distance CD, then distance AB = distance DC

Distance Property 3
if distance AB = distance CD, then distance BA = distance DC

Distance Property 4
if distance AB = distance CD, then distance DC = distance BA

Distance Property 5
if distance AB = distance CD, then distance DC = distance AB

Distance Property 6
if distance AB = distance CD, then distance CD = distance BA

Angle Symmetry Example
if m∠ABC = m∠XYZ, then m∠ABC = m∠ZYX

Angle Symmetry B
if m∠ABC = m∠XYZ, then m∠CBA = m∠XYZ

Angle Symmetry 2
if m∠ABC = m∠XYZ, then m∠CBA = m∠ZYX

Angle Symmetry 3
if m∠ABC = m∠XYZ, then m∠ZYX = m∠CBA

Angle Symmetry 4
if m∠ABC = m∠XYZ, then m∠XYZ = m∠CBA

Angle Symmetry Property 5
if m∠ABC = m∠XYZ, then m∠ZYX = m∠ABC

Angle Symmetry Example 2
if m∠ABC = x, then m∠CBA = x

Collinear Points Property
if m∠ABC = 180, then distance AC = (distance AB) + (distance BC)

Collinear Points Property 2
if m∠ABC = 180, then (distance AB) + (distance CB) = distance AC

Midpoint Sum
if M is the midpoint of line AB, then (distance AM) + (distance MB) = distance AB

Collinear Angles Property 9
if m∠ABC = 180, then m∠BAX = m∠CAX

Collinear Angles B
if m∠ABC = 180, then m∠CAX = m∠BAX

Collinear Angles Property C
if m∠ABC = 180, then m∠ACX = m∠BCX

Collinear Angles Property 10
if m∠ABC = 180, then m∠XCB = m∠XCA

Collinear Angles Property 3
if m∠CBA = 180, then m∠XAC = m∠XAB

Collinear Angles Property 3 B
if m∠ABC = 180, then m∠XAC = m∠XAB

Collinear Angles Property 3 C
if m∠ABC = 180, then m∠XAB = m∠XAC

Collinear Angles Property 4
if m∠CBA = 180, then m∠XAC = m∠XAB

Collinear Angles Property 5
if m∠CBA = 180, then m∠XAB = m∠XAC

Collinear Angles Property 6
if m∠CBA = 180, then m∠ACX = m∠BCX

Collinear Angles Property 7
if m∠ABC = 180, then m∠XAB = m∠CAX

Collinear Then Equal 2 Lines
if m∠ADC = 180 and m∠BEC = 180, then m∠ACB = m∠DCE

Collinear Then Equal 2 Lines 2
if m∠ADC = 180 and m∠BEC = 180, then m∠BCA = m∠ECD

Supplementary Angles Theorem
if ∠ABX and ∠XBC are supplementary, then m∠ABC = 180

Collinear Points Theorem
if m∠ABC = 180, then (m∠ABX) + (m∠XBC) = 180

Supplementary Angles Theorem (Converse)
if m∠ABC = 180, then ∠ABX and ∠XBC are supplementary

Collinear Then Equal
if m∠DAB = m∠CBA and m∠AXB = 180, then m∠DAX = m∠CBX


3 4 5